
DISCOVERY AND MEASUREMENT OF EXCITED B HADRONS

AT THE

COLLIDER DETECTOR AT FERMILAB

by

Jennifer M. Pursley

A dissertation submitted to The Johns Hopkins University inconformity with the

requirements for the degree of Doctor of Philosophy.

Baltimore, Maryland

August, 2007

c© Jennifer M. Pursley 2007

All rights reserved



Abstract

This thesis presents evidence for theB∗∗0 andΣ(∗)±
b hadrons in proton-antiproton colli-

sions at a center of mass energy of 1.96 TeV, using data collected by the Collider Detector

at Fermilab.

In the search forB∗∗0→ B±π∓, two B± decay modes are reconstructed:B±→ J/ψK±,

whereJ/ψ→ µ+µ−, andB±→ D̄0π±, whereD̄0→ K±π∓. Both modes are reconstructed

using 370±20 pb−1 of data. Combining theB± meson with a charged pion to reconstruct

B∗∗0 led to the observation and measurement of the masses of the two narrowB∗∗0 states,

B0
1 andB∗02 , of

m(B0
1) = 5734±3 (stat.)±2 (syst.) MeV/c2

m(B∗02 ) = 5738±5 (stat.)±1 (syst.) MeV/c2

In the search forΣ(∗)±
b →Λ0

bπ±, theΛ0
b is reconstructed in the decay modeΛ0

b→Λ+
c π−,

whereΛ+
c → pK−π+, using 1070±60 pb−1 of data. Upon combining theΛ0

b candidate

with a charged pion, all four of theΣ(∗)±
b states are observed and their masses measured to

be:
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m(Σ+
b ) = 5807.8+2.0

−2.2 (stat.)±1.7 (syst.) MeV/c2

m(Σ−b ) = 5815.2±1.0 (stat.)±1.7 (syst.) MeV/c2

m(Σ∗+b ) = 5829.0+1.6
−1.8 (stat.)+1.7

−1.8 (syst.) MeV/c2

m(Σ∗−b ) = 5836.4±2.0 (stat.)+1.8
−1.7 (syst.) MeV/c2

This is the first observation of theΣ(∗)±
b baryons.

Author: Jennifer M. Pursley

Adviser: Dr. Petar Maksimovíc
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Chapter 1

Introduction

1.1 Historical Background of Particle Physics

In the 5th century B.C., Greek philosophers such as Democritusfirst introduced the

idea that matter consisted of an infinite number of small, indivisible particles. They called

these particles “atoms,” which meant “unable to be divided.”

The idea of the atom as indivisible persisted for centuries,until 1897, when J. J. Thom-

son discovered that the “cathode rays” emitted from hot filaments of wire were actually

negatively charged particles with an extremely large charge-to-mass ratio. In fact, particles

with the same charge-to-mass ratio were ejected from different atoms, leading Thomson to

hypothesize these particles were of a single type. Today, weknow this subatomic particle

as the electron. Since atoms as a whole were known to be electrically neutral, the discov-

ery of negatively charged components to the atom implied there must also be positively
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charged components to compensate. Since the negatively charged particles are so light, the

positively charged component must carry most of the atom’s mass.

Early in the 20th century, Ernest Rutherford performed a scattering experiment where

a beam ofα-particles (ionized helium atoms) were fired at a thin sheet of gold foil. Some

of theseα particles scattered at large angles while most went throughthe foil without

scattering at all. From this, Rutherford concluded that the positive charge and mass of an

atom were concentrated at the atom’s center and occupied very little of the atom’s total

volume – a nucleus. He named the nucleus of hydrogen, the lightest element, the proton,

and in 1914 Niels Bohr proposed a hydrogen model which consisted of a single electron

orbiting this proton. However, the next heaviest atom, helium, weighed four times the

mass of the hydrogen atom although it contains only two electrons and thus can have only

two protons for the charge to balance. This mystery was solved in 1932, when Chadwick

discovered the neutron, a heavy electrically neutral particle which also resides inside the

nucleus.

Around the same time, other phenomena led to revolutions in the theory of light. Isaac

Newton assumed light was a corpuscular object, but 19th century physics had shown in-

stead the wave-like nature of light. In 1900, Maxwell Planckfound a mathematical model

for the black body radiation spectrum emitted by a hot object. He could only explain this

spectrum by assuming that the radiation emitted by a black body was quantized, mean-

ing the energy was always an integer multiple of some quantity. In 1905, Albert Einstein

proposed the much more radical idea that this quantization was a property of light itself,

2



returning to the classification of light as a particle. This particle, the quanta of light, is

called the photon. The quantization of light led to an entirely new description of electro-

magnetism; classical electrodynamics described the interaction between two electrons, for

example, as a consequence of the electric field around each electron. But in a quantum

field theory, that interaction is a consequence of the exchange of particles, the field quanta,

which is photons in the case of electromagnetic interactions. This realization paved the

way for future descriptions of the subatomic world. One milestone of this description was

its use by P. A. M. Dirac in 1930 to predict the existance of antimatter, an opposite-charge

counterpart to every matter particle. His theory was verified less than two years later when

Anderson discovered a positively charged twin to the electron, dubbed the positron, in his

study of cosmic rays.

The simple view of the world as composed entirely of protons,neutrons, and electrons

did not last long. In the 1930s, there was no answer to the question of what held the posi-

tively charged protons in the nucleus together; gravity is too weak to overcome the electric

repulsion. Initially, this force was simply called the “strong force.” In 1934, Yukawa at-

tempted to explain this strong force as a field between the proton and neutron in the nucleus;

this field must also be properly quantized, and Yukawa calculated the mass of this quanta

to be about one-sixth the mass of the proton. In 1937, two independent groups studying the

interactions of cosmic rays discovered a particle matchingYukawa’s description. However,

more detailed analysis of cosmic ray data showed this particle (later identified as the muon,

a heavy version of the electron) interacted only very weaklywith atomic nuclei. In 1947,
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another, heavier particle (the pion) was discovered in the cosmic rays, and this proved to

be the true Yukawa particle.

Also in the early 1930s, another puzzle presented itself in the form of nuclear beta

decay. In beta decay, the radioactive nucleus transforms into a slightly lighter nucleus

by emission of an electron. This seemed to be a straight-forward two-body decay; as

such, the energies of the outgoing particles are kinematically determined in the center-

of-mass frame. However, the energy spectrum of electrons inbeta decay was found to be

continuous, with the predicted energy serving as the upper limit to the spectrum. At first this

anomaly appeared to be a non-conservation of energy. Wolfgang Pauli, however, postulated

the seeming two-body decay was really a three-body decay, and the third particle was a

massless, electrically neutral, virtually undetectable new particle. This suggestion worked

so well that it was generally accepted, even though the first neutrino, as this particle came

to be called, was not experimentally observed until the mid-1950s.

As the study of cosmic rays continued, and were soon joined bythe studies of parti-

cles produced by man-made nuclear reactors and particle accelerators, more and more new

particles were discovered. By the 1960s, more than a hundred different particles had been

identified, although some were later shown to be spurious. This proliferation led many

physicists to wonder – could all of these particles truly be fundamental? In 1961, Mur-

ray Gell-Mann managed to organize many of these particles into geometrical patterns by

their properties, similar to Mendeleev’s ordering of chemical elements. Gell-Mann’s pat-

terns predicted one particle with specific properties whichhad not yet been observed, and
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in 1964, this missing particle (Ω−) was indeed discovered. Starting from these patterns,

Gell-Mann and Zweig were able to describe many of these particles as composed of more

fundamental building blocks known as “quarks.” Particles made of quarks were referred to

as hadrons. There are two types of hadrons: mesons, which contain one quark and one anti-

quark, and baryons, which contain three quarks or three antiquarks. Gell-Mann and Zweig

required three quarks to explain all the known hadrons. A fourth quark was predicted as

early as 1964 to explain some experimental observations, and a meson made of this fourth

quark was finally seen in 1974.

Since that time, two more quarks have also been discovered, the last as recently as

1995. The electron and the muon, along with neutrinos, are not made of quarks but are

fundamental particles called leptons. There is another lepton, called the tau, which was

discovered in 1975. Experiments have shown that there are separate neutrinos for electrons,

muons, and taus. These particles, and the forces that governtheir interactions, make up the

Standard Model of particle physics which we use today.

1.2 High Energy Physics in the 21st Century

Particle physicists study the fundamental building blocksof matter, seeking to under-

stand their origins and interactions. These particles exist on the smallest scales of time and

length, making them impossible to “see” with any traditional microscope. Instead, we use

high energy colliders as our microscopes for the subatomic world. In a collider, particles
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such as electrons or protons are accelerated to near the speed of light, and then collided

with particles traveling at the same speed in the opposite direction. The energy we give

these particles by accelerating them, using Einstein’s famous relation ofE2 = m2c4+ p2c2,

allows us to probe their interactions at shorter distance scales; the higher the energy, the

shorter the distance scale we can probe with this particle microscope. Thus, this field of

physics is known as high energy physics.

The Tevatron at the Fermi National Accelerator Laboratory is currently the world’s

highest energy hadron collider. It accelerates protons andantiprotons to 980 GeV and

collides them to create a shower of particles. The electronvolt (eV) is a unit of energy com-

monly used in particle physics, and 1 GeV, or Gigaelectronvolt, is equivalent to approxi-

mately 1.602×10−10 Joules. The particle collisions occur in the center of largedetectors

situated on the collider which measure the properties of theparticles created in the colli-

sion. There are two detectors on the Fermilab collider, the Collider Detector at Fermilab

(CDF) and the DØ detector. The data collected by these detectors is then used by physicists

to reconstruct the collision and identify the outgoing particles.

By studying particle collisions at higher and higher energies, physicists continue to

test how particles interact. Although the Standard Model ofparticle physics developed

in the last few decades has successfully described particleinteractions thus far, the model

has limitations. For example, the Standard Model cannot explain why there should be six

quarks and six leptons or why they have the masses they do. TheHiggs particle, which in

the Standard Model is the particle whose interactions give all other fundamental particles
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mass, has not yet been observed. The Standard Model also cannot explain why the universe

around us is composed almost entirely of matter with very little antimatter. And this model

cannot explain why neutrinos, which were thought to be massless, have now been shown

to have a very small but nonzero mass. The Standard Model as itstands is incomplete and

there must be some new, undiscovered physics behind it. By gaining a better understanding

of particle interactions at higher energies, today’s high energy physicists are working to

uncover the new physics beyond the Standard Model.

1.3 Outline of this Thesis

This thesis describes the observation and measurement of the B∗∗0 andΣ(∗)±
b hadrons,

whose measurement can shed light on the nature of strong force interactions between

quarks. The theoretical predictions and motivations for these measurements are given in

Chapter 2. A description of the experimental apparatus used for both measurements is given

in Chapter 3. The data samples collected by this experiment are described in Chapter 4.

TheB∗∗0 measurement is detailed in Chapter 5, while theΣ(∗)±
b measurement is described

in Chapter 6. The systematic uncertainties for both measurements are shown in Chapter 7.

Finally, the results and conclusions of both measurements are summarized in Chapter 8.
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Chapter 2

Theoretical Motivation

2.1 The Standard Model of Particle Physics

The Standard Model of Particle Physics is the most successful theory to date for de-

scribing elementary particles. In the Standard Model, all matter and its interactions are

characterized by three kinds of elementary particles: quarks, leptons, and the force medi-

ators. The quarks and leptons are called “fermions” becausethey have half-integer spin

values,S= 1
2. They interact with each other by exchange of the force mediators, which

are called “bosons” because they have integer spin values. The fundamental particles are

described in more detail below.
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2.1.1 The Fundamental Particles

The six leptons and six quarks are listed in Tab. 2.1. The masses of each particle are

given in units of MeV/c2, where 1 MeV/c2 = 1.783 ×10−30 kg. For each fundamental

particle, there exists an antiparticle with the same mass but opposite quantum numbers1.

The antimatter particles are generally denoted by putting aline over the particle symbol.

For example, the antiparticle equivalent of the down quark is denotedd̄ and pronounced

“d-bar.” One exception is the positron, the antimatter equivalent of the electron, which has

its own name and is denoted bye+ rather than ¯e.

The leptons all carry integer values of electric charge, andare arranged in three gen-

erations (electron, muon, and tau). The muons (µ) and taus (τ) are heavier versions of the

electron (e); they have the same spin and electric charge. The neutral leptons are called

neutrinos, and there is one associated with each lepton generation. In the Standard Model,

lepton flavor is conserved by all interactions. The leptons are assigned a lepton number of

+1, while the antimatter leptons have a lepton number of−1. Recent observations have

shown that neutrinos can oscillate from one lepton flavor to another [1]; so far this is the

only observed violation of lepton number conservation.

The quarks all carry a fractional electric charge of either+2
3 or −1

3. As with leptons,

the quarks may be arranged in three generations. The charm and top quarks are heavy ver-

sions of the up quark, while the strange and bottom quarks areheavy versions of the down

quark. Although leptons can exist freely, quarks are confined in bound quark-antiquark

1There are theories in which neutrinos are their own antiparticles, but this has not yet been experimentally
confirmed. Thus we still refer to a neutrino antiparticleν̄.
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states (mesons) or bound three quark states (baryons). Quarks carry an extra degree of

freedom in addition to electric charge and spin. This degreeof freedom has been called

“color charge” and the three possible color charges arered, blue, andgreen. These do not

denote literal colors, but are only labels for the color charges just as “plus” and “minus”

are labels for the electric charges. The parallel of the color charge with visual color is that

red, blue, and green light combine to make white light; this is exactly the requirement for

bound quark states, they must be colorless. In baryons each quark carries one of the color

charges; in mesons, one quark carries a color charge and the other carries the correspond-

ing anticolor charge. Tabs. 2.2 and 2.3 list the quark content of the mesons and baryons

mentioned in this text. Similar to the previously discussedlepton number conservation,

baryon number is also conserved in any interaction. Baryons are assigned a value of+1

while antibaryons (containing three antiquarks) have a value of−1. There is no equivalent

rule for meson number conservation.

Physicists considered it curious that the proton and the neutron had very nearly the

same mass (938.27 MeV/c2 and 939.57 MeV/c2, respectively), the same spin (S= 1
2), and

appeared to differ only in electric charge. In 1932, Werner Heisenberg postulated that the

proton and neutron were two representations of a single particle. In analogy to spin, this

symmetry was called “isospin.” The proton and neutron were assigned isospinI = 1
2, with

the proton being “isospin up” and the neutron “isospin down.” Today we recognize isospin

symmetry as a result of the nearly equal up and down quark masses. If all quarks had the

same mass inside hadrons, isospin would be carried by all quarks. As it is, only the two
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lightest quarks obey isospin symmetry to a good degree. Thusthe up and down quarks

have isospinI = 1
2 and all other quarks have isospinI = 0. Another example of isospin

symmetry is for the pions, which haveI = 1. The masses of theπ± andπ0 given in Tab. 2.2

are close but not exactly the same. The mass difference between hadrons which differ only

by replacing au quark with ad quark is an indication of isospin symmetry violation.

2.1.2 Particle Interactions

In the Standard Model, interactions between the fundamental fermions are mediated

by the exchange of the force mediators, also known as gauge bosons. There is a different

gauge boson for each of the four forces in nature: the strong nuclear force, the weak nuclear

force, electromagnetism, and gravity. The mediators and relative strengths of these forces

are given in Tab. 2.4.

Electromagnetic interactions are responsible for most interactions outside of the nu-

cleus. Electromagnetism binds electrons to nuclei and is thus the basis of all chemistry.

These interactions are mediated by a massless, spin-1 bosoncalled the photon. Although

the photon carries no electric charge, it couples to all particles with a non-zero electric

charge. Because the photon is massless, the electromagneticforce has an infinite range,

although its strength drops off rapidly as 1/r2.

The strong nuclear force is responsible both for binding quarks together in hadrons and

for binding protons and neutrons together in a nucleus. These interactions are mediated

by massless, spin-1 bosons called gluons. The color charge carried by quarks may also
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Table 2.1: The fundamental fermions. Charges are in units of the abso-
lute electron charge. All masses are taken from Ref. [1]. The electron and
muon masses are shown without errors because the errors are so small.

Quarks Symbol Charge Mass (MeV/c2)

up u +2
3 1.5−3

down d −1
3 3−7

charm c +2
3 (1.25±0.09) ×103

strange s −1
3 95±25

top t +2
3 (174.2±3.3) ×103

bottom b −1
3 (4.20±0.07) ×103

Leptons Symbol Charge Mass (MeV/c2)

electron e −1 0.511

electron neutrino νe 0 < 2 eV/c2

muon µ −1 105.7

muon neutrino νµ 0 < 0.19

tau τ −1 1776.90±0.20

tau neutrino ντ 0 < 18.2
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Table 2.2: Quark content of the mesons used in this text. Masses are
taken from Ref. [1].

Meson Quark Content Mass (MeV/c2)

π± ud̄, ūd 139.57018±0.00035

π0 (uū−dd̄)/
√

2 134.9766±0.0006

K± us̄, ūs 493.677±0.016

K0, K̄0 ds̄, d̄s 497.648±0.022

D± cd̄, c̄d 1869.3±0.4

D0, D̄0 cū, c̄u 1864.5±0.4

J/ψ cc̄ 3096.916±0.011

B± ub̄, ūb 5279.0±0.5

B0, B̄0 db̄, d̄b 5279.4±0.5

B0
s, B̄0

s sb̄, s̄b 5367.5±1.8
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Table 2.3: Quark content of the baryons used in this text. Masses are
taken from Ref. [1].

Baryon Quark Content Mass (MeV/c2)

p uud 938.27203±0.00008

n udd 939.56536±0.00008

Σ+, Σ(1385)+ uus 1189.37±0.07, 1382.8±0.4

Σ−, Σ(1385)− dds 1197.449±0.030, 1387.2±0.5

Λ+
c , Λ∗+c udc 2286.46±0.14, 2595.4±0.6

Σ++
c uuc 2454.02±0.18

Σ0
c ddc 2453.76±0.18

Λ0
b udb 5624±9

Σ+
b , Σ∗+b uub unobserved

Σ−b , Σ∗−b ddb unobserved
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Table 2.4: The four forces in nature and their correspondinggauge
bosons. The strength roughly gives the relative magnitudesof each force
in the case where two protons are just in contact [2]. Masses are taken
from Ref. [1], where the gluon mass is a theoretical value.

Force Mediator JP Mass (GeV/c2) Relative Strength

Strong Nuclear Gluon (g) 1− 0 1

Electromagnetic Photon (γ) 1− < 6 ×10−17 eV/c2 10−2

Weak Nuclear Charged:W± 1− 80.403±0.029 10−7

Neutral:Z0 1+ 91.1876±0.0021

Gravity Graviton 2+ unobserved 10−39

change during a strong interaction. Consequently, the gluons themselves must be “bicol-

ored,” meaning they carry one color and one anti-color charge. Since leptons do not have

a color charge, they do not interact with gluons and thus do not feel the strong force. The

interactions of colored particles can be modeled by requiring that the observable world be

invariant under the SU(3) group of local gauge transformations2. The resulting field the-

ory is called quantum chromodynamics (QCD), and in terms of the SU(3) symmetry there

are eight gluons corresponding to each of the states in a color octet. Since the gluons are

massless, the strong force would also be expected to have infinite range. However, due to

the confinement of quarks and gluons to colorless hadron states, we observe the force to be

of very short range, essentially the size of the nucleus.

The weak nuclear force is responsible for all interactions which change quark flavors,

2The mathematical properties of groups are well-established; for more information on the SU(3) group,
consult a group theory reference such as Ref. [3].
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such as nuclearβ-decay. All leptons and quarks feel the weak force, which is mediated

by the massive, spin-1 intermediate vector bosons. The charged weak interactions are

mediated by theW+ andW− bosons3, which have a mass of∼ 80 GeV/c2. The neutral

weak interactions are mediated by theZ0 boson, with a mass of∼ 91 GeV/c2. Because

these force carriers are so massive, the weak interaction has a range even less than the size

of the nucleus.

Gravity, the weakest of the four forces, is the only force which is not included in the

Standard Model of particle physics. Physicists are still searching for a satisfactory theory

of gravity. Most models postulate the mediator of the gravitational force to be a massless,

spin-2 boson called the graviton, but such a particle has yetto be observed.

The Standard Model provides no explanation for the existence of four separate forces,

and physicists are searching for a “grand unifying theory” in which the four forces are

different manifestations of one underlying force. This effort began in the early 18th century,

when it was realized that electricity and magnetism were actually two aspects of a single

force, now called electromagnetism. Einstein attempted but never succeeded in unifying

gravity and electromagnetism into one single field theory. However, in the 1960’s the

physicists Glashow, Weinberg, and Salam developed a very successful theory which joined

the weak and electromagnetic forces (electroweak unification). The obvious next step is

to combine the strong and electroweak forces. There are somepromising early results, but

this is still a work in progress.

3The superscripts on theW± andZ0 bosons refer to the electric charge carried by the particle.
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2.2 Quantum Chromodynamics

Quantum chromodynamics (QCD) describes the interactions ofcolored objects, and in

principle it can be used to calculate the properties of hadrons. However, QCD problems

are notoriously difficult to solve analytically, as they consist of path integrals in a contin-

uum theory. The strong interaction constantαs is not a constant;αs actually decreases

as the momentum transfer|q2| of an interaction increases. A higher|q2| occurs when the

quarks are closer together. Consequently, the color force between two quarks is weak at

short distances; this property is known as “asymptotic freedom.” The color force then in-

creases as the|q2| decreases, or as the quarks move farther apart. This property, known as

“confinement,” is thought to be the reason quarks are confinedin hadrons.

For high|q2| interactions, the quarks and gluons involved behave as freeparticles. Be-

causeαs is so small, it is possible to use a perturbative expansion inpowers ofαs to solve

QCD problems. This approach, known as perturbative QCD, has resulted in some of the

most precise tests to date of QCD interactions at high energies. However, few tests exist

of theories in regions of non-perturbative QCD. These non-perturbative QCD effects can

obscure or confuse indirect searches of precision measurements inB decays, and it is im-

portant to understand their contributions as we continue the search for physics beyond the

Standard Model.

The QCD confinement scaleΛQCD≈ 400 MeV/c2 is the typical energy at which QCD

becomes non-perturbative. The description of quarks in a hadron is inherently a low energy

interaction, whereαs is of order unity. In this case, we typically exploit some symmetry of
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QCD rather than attempting a dynamical calculation. There are several prominent methods

for predicting QCD results at low|q2|, including lattice QCD, 1/N expansions, and effec-

tive theories. Lattice QCD uses a discrete set of space-time points and heavy or light quark

propagators to reduce continuum path integrals to numerical computations which can be

performed on supercomputers. Such simulations are time-intensive, and each sample takes

years to complete. However, the results can give insight into the non-perturbative regime

of QCD. The 1/N expansion starts from the premise that the number of colors is infinite;

even though QCD has only 3 colors, the number 1/N is treated as small enough to ex-

pand around. Effective theories also simplify QCD calculations by expanding around some

parameter which is assumed to be either very small or infinite. For example, chiral pertur-

bation theories assume the light quark masses are zero, while heavy quark effective theories

assume an infinite mass for the heavy quarks. Heavy quark effective theories are used to

explain the heavy hadron nomenclature and this approach is described in more detail in

Sec. 2.2.1.

2.2.1 Heavy Quark Effective Theory

The QCD treatment of quark-quark interactions significantlysimplifies if one of the

participating quarks is much heavier thanΛQCD. The momentum exchange between the

heavy quark and the light quark is much less than the heavy quark massmQ if mQ≫ΛQCD.

In this case, the recoil of the heavy quark is negligible, andthe heavy quark acts as a static

source of electromagnetic and color (chromomagnetic) fields. In the limit of an infinite
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heavy quark mass, the interactions of the light quarks are independent ofmQ. With a

finite heavy quark mass, this formalism allows corrections to the limit using a systematic

expansion in powers ofΛQCD/mQ. Methods employing this formalism are known as heavy

quark effective theories (HQET) [4, 5].

The HQET approach is used to predict the spectroscopy of “heavy hadrons,” hadrons

containing one or more heavy quarks. For an infinite heavy quark mass, the light quark

excitations alone determine the spectrum of the heavy hadrons. These solutions do not

depend on the flavor of the heavy quark, so to the first order thespectrum of all heavy-

light mesons is expected to be the same. The heavy quark stillhas a spin quantum number

SQ = 1
2, which leads to a chromomagnetic moment

µQ =
g

2mQ
(2.1)

As mQ→ ∞, the chromomagnetic moment approaches zero, and the spin interaction be-

tween the light quarks and the heavy quark is suppressed. This leads to a doublet of hadrons

with the same mass for each light quark excitation level, onestate for each possible value

of the heavy quark spin.

One example of the HQET approach is for theB meson, made of ab quark and au or d

quark. Theb quark has a spin angular momentumJQ = 1
2, while the light quark has a total

angular momentum

Jl =
∣

∣

∣
L± 1

2

∣

∣

∣
(2.2)

whereL is the orbital angular momentum of the light quark. The resulting physical hadron
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state has a total angular momentum of

J =
∣

∣

∣
Jl ±

1
2

∣

∣

∣
(2.3)

In the ground state ofL = 0, Jl = 1
2. In the limit mb→ ∞, the doublet states withJ = 0

(B) andJ = 1 (B∗) would be degenerate. When effects of the order 1/mb are included,

the chromomagnetic interactions split the states with different values ofJ. This splitting,

called “hyperfine” in analogy with the hyperfine levels in atoms which arise from the weak

nuclear magnetic moment, is proportional to the heavy quarkchromomagnetic momentµQ.

As predicted, theB∗ state is slightly heavier than theB state, and decays toB via photon

emission.

The HQET approach has been successfully applied to describeavailable experimental

data onQq̄ mesons for the ground states and the lowestP-wave excitations in both the

charm andb sectors. The HQET approach for the lowestP-wave excitations in theb sector

is described in Sec. 2.4.
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2.3 Production ofbb̄ Pairs in a pp̄ Collider

The simple model of a proton is of three quarks (twou and oned) bound together

by the strong force, or the interchange of gluons. However, we know the real picture is

more complicated – there are many, many gluon exchanges occuring at any time. Some

of these gluons may also split into quark-antiquark pairs which will annihilate back into

a gluon. All of these pieces of the proton, collectively referred to as “partons,” will carry

part of the total energy or momentum. Hadrons are composed ofthree classes of partons:

the valence quarks, which are the constituent quarks of the hadron; virtual gluons; and sea

quarks, the quark-antiquark pairs produced by virtual gluons. The hadron momentum is

not distributed equally among all partons, but the measuredparton distribution functions

f a
i (x) give the probability that partoni carries a fractionx of the total momentum of the

hadrona.

At the Tevatron, protons and antiprotons collide with a center of mass energy of
√

s=

1.96 TeV. At these energies, the collision time and distance between partons is so short

that the partons may be treated as free. In this case perturbative QCD and the parton

distribution functions may be used to determine the possible interactions. Very rarely is the

entire momentum of the proton and the antiproton involved ina collision. More commonly,

only one parton from the proton and one from the antiproton will interact, via the exchange

of virtual bosons.

There are many ways in which abb̄ pair could be produced, as shown in Figs. 2.1

and 2.2. Fig. 2.1 shows the lowest or leading order QCD production. The leading or-
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Figure 2.1: Leading order processes inbb̄ production at a hadron collider.
Process (a) is flavor creation throughqq̄ annhiliation, whereq can be any
quark. Processes (b) and (c) are both forms of flavor creationvia gluon
fusion.

der mechanisms are those with the fewest possible number of quark-gluon or gluon-gluon

connections. In leading order production, thebb̄ pair are the only outgoing products so

they move away from each other with equal but opposite momenta in the center-of-mass

frame. The leading order production dominates forqq̄ pairs when the quark massmq is

comparable to or larger than the average momentum carried bythe partons; at the Tevatron

energies, this is only true oftt̄ production. Forbb̄ production, next-to-leading order pro-

duction mechanisms such as those shown in Fig. 2.2 also play asignificant role. Each of

these mechanisms has one more quark-gluon or gluon-gluon connection than the leading

order mechanisms, resulting in a final state with abb̄ pair and a gluon. In this case, the

gluon may take a significant portion of the energy.

The confinement of QCD never allows a quark or gluon to be observed free. After

thebb̄ pair are produced, the color force must organize them into colorless hadrons. This

is usually achieved by the creation of additionalqq̄ pairs in a process called “fragmenta-

tion” or “hadronization.” The free gluon must also fragmentinto qq̄ pairs which will form
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Figure 2.2: A few possible next-to-leading order processesin bb̄ pro-
duction at a hadron collider. Next-to-leading order processes have one
more quark-gluon or gluon-gluon connection than leading order pro-
cesses. Processes (a) and (b) are both forms of flavor creation, through
annhilation (a) and gluon fusion (b). Process (c) is referred to as flavor
excitation. Process (d) is referred to as gluon splitting.

hadrons. For high energy gluons orb quarks, many fragmentation particles may be pro-

duced, leading to a collimated “jet” of hadrons whose total energy sums to the energy of the

initial quark or gluon. The fractionsfu, fd, fs, fc, and fΛb give the likelihood for ab-quark

to first produce auū, dd̄, ss̄, cc̄, or diquark-antidiquark pair respectively. Depending on the

qq̄ produced, theb quark will hadronize into aB+, B0, B0
s, B+

c , or Λ0
b. TheB+

c is produced

so rarely that the production fractionfc has not yet been measured. The fractionsfu ≈ fd

have been measured at bothe+e− andpp̄ colliders to be about 39.8±1.0% [1]. A recent
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CDF measurement of the relative production fractions finds [6]:

fu
fd

= 1.054±0.018(stat.)+0.025
−0.045 (syst.)±0.082(BR)

fs
fu + fd

= 0.160±0.005(stat.)+0.011
−0.010 (syst.)+0.057

−0.034 (BR)

fΛb

fu + fd
= 0.281±0.012(stat.)+0.058

−0.056 (syst.)+0.128
−0.086 (BR)

The three errors on each measurement are due to statistical fluctuations (stat.), systematic

uncertainties (syst.), and uncertainties due to measurements of the branching ratios on the

decays of the given hadrons (BR).

2.3.1 Topology of abb̄ Event

After reviewing thebb̄ production mechanisms in a proton-antiproton collision, we can

picture a typicalbb̄ event. In onebb̄ collision, two partons interact to produce abb̄ pair

and possibly also a gluon. The twob quarks and the gluon fragment, producing many other

outgoing hadrons. The remnants of the proton and the antiproton must also now hadronize

to form colorless states, which produces more hadrons not related to theb quark production.

This source of background is referred to as the “underlying event.” In addition, there may

be more than onepp̄ collision in one bunch crossing. At the very highest luminosities,

there may be 5-10pp̄ interactions at every bunch crossing! Fortunately, each proton and

antiproton bunch is about 30 cm long, so when multiplepp̄ interactions occur, they are

typically far apart. Background hadrons from anotherpp̄ collision are referred to as a

“pile-up event.” The topology of a typicalbb̄ event in the CDF II detector is shown in
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Underlying event

Gluon jet

B. frag.

Lxy

B decay
products

Opposite side B

d o

Figure 2.3: Topology of a typicalbb̄ event in app̄ collision, shown in the
transversexy plane. This is a next-to-leading order production mecha-
nism with abb̄ pair and a gluon jet, along with the underlying event from
hadronization of thepp̄ debris. The transverse decay lengthLxy (typi-
cally on the order of 1 mm) and impact parameterd0 of theB meson are
also shown. Figure not shown to scale.

Fig. 2.3.
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2.4 Theoretical Predictions forB∗∗0

The next step in the spectroscopy ofB mesons is the first orbitally excited (L = 1) state

of the light quark4. The total angular momentumJ of the meson is a combination of the

total angular momentumJl of the light quark and the spin of the heavy quark. In the case

of non-zero orbital angular momentum, the light quark has a total angular momentum of

Jl =
∣

∣L± 1
2

∣

∣. WhenL = 1 this leads to two isospin doublets of excited states, one with

Jl = 1
2, J = 0 or 1, and another withJl = 3

2, J = 1 or 2. These four states are collectively

referred to asB∗∗. The two states withJl = 1
2 are calledB∗0 andB∗1, and decay toB(∗)π

via aS-wave transition; consequently, these states are very broad, with their intrinsic width

expected to be∼ 100 MeV/c2 [7]. The states withJl = 3
2 are calledB1 andB∗2, and decay to

B(∗)π via aD-wave transition; therefore these two states are much narrower than theJl = 1
2

states. The decayB1→ Bπ is forbidden by angular momentum and parity conservation,

while bothB∗2→ Bπ andB∗2→ B∗π are allowed. Tab. 2.5 summarizes the fourL = 1 states

and their decays. TheB spectrum is depicted in Fig. 2.4.

Decays toB∗π are immediately followed by the decay ofB∗ to B by emission of a

photon with energyE(γ) = 45.78± 0.35 MeV/c2 virtually 100% of the time [1]. These

low energy photons cannot be separated from the large amountof other electromagnetic

background sources in the CDF II detector; consequently, thereconstructed mass of the

B∗∗ states is decreased by the energy of this photon.

4In contrast to atomic spectra, for heavy hadrons the first orbitally excited states actually lie below the first
radially excited states. This is due to the increasing-with-distance nature of the strong interaction between
the quarks.
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The four orbitally excitedB∗∗ states exist for bothB± andB0, denoted respectively by

B∗∗± andB∗∗0. TheB∗∗± states are expected to decay toB(∗)±π0 or B(∗)0π±, while theB∗∗0

states decay toB(∗)0π0 or B(∗)±π∓. If the B∗∗ is heavy enough, the decay to aB meson and

two pions is also allowed for each charge state. The CDF II detector cannot reconstruct

neutral pions, which decay to two soft photons before the calorimeters; therefore the pre-

ferred reconstructed decay modes are those involving charged pions. This thesis presents

the reconstruction ofB∗∗0 states decaying toB(∗)±π∓. For ease of reference,B∗∗ will be

used in place ofB∗∗0 andB1 andB∗2 in place ofB0
1 andB∗02 from this point on.

Table 2.5: Properties of the four orbitally excited (L = 1) B∗∗ states.

State Jl JP Width Decay

B∗0
1
2 0+ broad (Bπ)

B∗1
1
2 1+ broad (B∗π)

B1
3
2 1+ narrow (B∗π)

B∗2
3
2 2+ narrow (Bπ,B∗π)

The HQET approach may be used to predict the properties of theB∗∗ states. Tab. 2.6

shows the predictions for four applications of HQET, each using a different model to de-

scribe the motion of the light quark. Ref. [8], which predictsthe masses for only the two

narrow states, employs next to leading order heavy quark expansion from measurements of

the orbitally excitedD mesons [12]. This method is also used to predict the intrinsic width

of theB∗2 state and the ratio of widths for theB∗2 and theB1, as shown in Tab. 2.7. Ref. [9]
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uses an effective heavy quark model for theb quark and a non-relativistic potential quark

model for the light quark. Ref. [10] applies heavy quark symmetry and a non-relativistic

valence quark model for the light quark. Ref. [11], on the other hand, uses a fully relativis-

tic treatment of the light quark to model the quasipotentialdescribing the heavy-light quark

dynamics. This is a significant improvement over the non-relativistic treatment.

Table 2.6: Predictions for the masses of the fourB∗∗ states, using the
HQET approach with different models to describe the motion of the light
quark. All theoretical predictions find an average value forthe charged
and neutralB∗∗ states.

State Ref. [8] Ref. [9] Ref. [10] Ref. [11] Units

m(B∗0) 5.650 5.870 5.738 GeV/c2

m(B∗1) 5.650 5.875 5.757 GeV/c2

m(B1) 5.780 5.759 5.700 5.719 GeV/c2

m(B∗2) 5.794 5.771 5.715 5.733 GeV/c2

Table 2.7: Predictions for the intrinsic widths of the two narrow B∗∗

states, calculated in Ref. [8].

Name Prediction

Γ(B∗2) 16±6 MeV/c2

Γ(B1)/Γ(B∗2) 0.9 (for pureD-wave)

All theoretical predictions show the mass separation between the two narrowB1 andB∗2

states should be small, on the order of 20 MeV/c2. However, theB1 andB∗2 mass peaks

will be additionally separated by the mass difference between theB∗ and theB. One extra
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complication to the mass spectrum arises from theB∗2→ B∗π decay; this mass peak will

be displaced from theB∗2→ Bπ mass peak by the energy of the photon inB∗ decay. The

predicted relative branching ratio of the twoB∗2 decay modes is based on observations of

the charm sector. For theD∗2,

BR(D∗2→ Dπ)

BR(D∗2→ D∗π)
= Fc×

(

kD

kD∗

)5

(2.4)

wherekD(kD∗) is the momentum of the pion in the rest frame of theD(D∗), andFc is the ratio

between the form factors in the two decay channels. The values of kD(kD∗) are obtained

from a simple kinematic computation using the world averagemasses ofD(D∗), π, andD∗2.

The 2006 world average value for this ratio is [1]

BR(D∗2→ Dπ)

BR(D∗2→ D∗π)
= 2.3±0.6 (2.5)

A formula of the same form is valid for theB∗2. ThekB(kB∗) are calculated using the world

average masses ofB(B∗), π, and the value of 5730 MeV/c2 for theB∗2. Heavy quark sym-

metry setsFb = Fc [13]. The resulting ratio of branching fractions is predicted to be

BR(B∗2→ Bπ)

BR(B∗2→ B∗π)
= 1.1±0.3 (2.6)

Due to their large intrinsic width, theB∗0 andB∗1 states are difficult to observe, and have

not yet been measured. The narrowB0
1 andB∗02 states, however, were first observed by the

LEP experiments [14, 15, 16]. More recently, the narrowB∗∗0 states have been precisely

measured by the DELPHI [17] and DØ experiments [18].
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2.4.1 Contribution of B∗∗0s

The same orbitally excited states which exist for theB meson also exist for theBs

meson. They are called theB∗∗s states, individually denotedB∗s0, B∗s1, Bs1, andB∗s2. As in

theB∗∗ system, the statesB∗s0 andB∗s1 are expected to be broad and have not been observed.

The narrow stateBs1 decays toB∗K if its mass is above the kaon decay threshold. The

narrow stateB∗s2 is kinematically able to decay to bothBK andB∗K, although its mass may

not be above theB∗K decay threshold.

The narrowB∗∗0s states contribute to theB∗∗ analysis as a background when the kaon

is misreconstructed as a pion. Depending on their masses, the narrowB∗∗s states may lie

under theB∗∗ signal region when misreconstructed. Thus, for theB∗∗ analysis it is im-

portant to estimate where theB∗∗s states will be reconstructed and how smeared the signal

peaks will be. At the time this analysis was performed, only the B∗0s2 → BK decay had

been observed [16, 17]. The decayB∗0s2 → B∗K had not been observed, although theB∗0s2

mass measurements indicate it may be massive enough to decayvia theB∗K channel. We

estimate theB∗0s2 contribution as described in Sec. 5.1.4.

Since that time, the decayB0
s1→ B∗K has been observed at CDF along with theB∗0s2 →

BK decay [19]. This represents the first measurement of theB0
s1 state. An update to the

B∗∗ measurement presented in this thesis is currently underway, and will include a more

accurate estimate of theB∗∗s contribution.
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Figure 2.4: Predicted spectrum and dominant decays of the lowest lying
B meson states.
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2.5 Theoretical Predictions forΣ(∗)±
b

The baryons containing one bottom quark and two light quarks(u or d) can also be de-

scribed using heavy quark effective theories. The two lightquarks act together as a diquark

system surrounding theb quark, which is again a static source of the electromagneticand

color fields. The diquark state may either be symmetric, meaning the light quarks are in the

singlet spin state, or antisymmetric, if the quarks are in the triplet spin state. Diquark states

in an antisymmetric flavor configuration[q1,q2] are calledΛ-type whereas those in a flavor

symmetric state{q1,q2} are calledΣ-type. In the groundΛ-type state the light diquark

has isospinI = 0 andJP
l = 0+, which when coupled with the heavy quark spin leads to a

state with totalJP = 1
2
+

. In the groundΣ-type state the light diquark has isospinI = 1 and

JP
l = 1+. With the heavy quark spin, this leads to a doublet of baryonswith JP = 1

2
+

(Σb)

andJP = 3
2
+

(Σ∗b). The baryon multiplets withJP = 1
2
+

andJP = 3
2
+

are shown in Fig. 2.5.

The ground stateΛ-type baryons decay weakly, and the ground stateΣ-type baryons

decay strongly toΛ-type baryons by emitting pions. TheΣb baryons exist for all charge

states, namelyΣ(∗)±
b andΣ(∗)0

b . Unlike in the meson system,Σ(∗)+
b andΣ(∗)−

b contain dif-

ferent quarks (uub andddb, respectively) and are not antiparticles of one another. The

antiparticles are denoted byΣ(∗)+
b andΣ(∗)−

b . The Σ(∗)±
b decay toΛ0

bπ±, while theΣ(∗)0
b

decay toΛ0
bπ0. As the CDF II detector cannot reconstruct neutral pions, we search only for

theΣ(∗)±
b states. For convenience, we useΣb to indicate all the chargedΣ(∗)±

b states andΣ∗b

specifically forΣ∗±b .
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In the limit mb→ ∞, the spin doublet{Σb,Σ∗b} would be exactly degenerate, but as

in the B∗∗ case there will be a hyperfine mass splitting between the doublet states. The

hyperfine mass splittings are denoted bym(Σ∗+b )−m(Σ+
b ) ≡ ∆∗+ andm(Σ∗−b )−m(Σ−b ) ≡

∆∗−. There is also a mass splitting between theΣ(∗)−
b and Σ(∗)+

b states due to isospin

violation and Coulomb effects. Due to this additional mass splitting, the hyperfine splitting

is not expected to be the same for theΣ+
b andΣ−b states,i.e. ∆∗+ 6= ∆∗−. Using the world

average mass values for theΣ system (ansquark combined with two light quarks), there is a

difference of 3.68±0.64 MeV/c2 between the hyperfine splittingsm(Σ+)−m(Σ(1385)+)

andm(Σ−)−m(Σ(1385)−) [1]. The difference should be smaller in theΣb system due to

the much heavierb quark mass. Scaling the mass difference in theΣ system by the ratio of

thesquark mass to theb quark mass, we expect∆∗+ = ∆∗−+(0.40±0.07) MeV/c2 [20].

Another interesting aspect of aΣb measurement is to measure the polarization both of

the producedΣb and theΛ0
b from Σb decay. A heavy quark should not be significantly

affected by the low energy interactions inside a hadron. In that case, the polarization of the

resulting hadron may give information about the polarization state ofb quarks produced

in the fragmentation process [21, 22]. Thus measuring the polarization ofΣb baryons will

give insight into the fragmentation mechanisms ofb quarks.

There are a number of predictions for the masses and isospin splittings of these states

made using HQET, non-relativistic and relativistic potential models, 1/Nc expansion, sum

rules, and lattice QCD. Tab. 2.8 summarizes many of these theoretical predictions. The

isospin splitting between the negative and positive partners of the isospin triplet, predicted
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to be large in some models (see Tab. 2.9), may also be possibleto measure. Overall, based

on these theories, we expect to seem(Σb)−m(Λ0
b)∼ 180−210 MeV/c2, m(Σ∗b)−m(Σb)∼

10−40 MeV/c2, andm
(

Σ(∗)−
b

)

−m
(

Σ(∗)+
b

)

∼ 5−7 MeV/c2.

The intrinsic width ofΣb baryons is dominated by single pion transitions. Photon transi-

tions of the typeΣb→Λbγ are expected to have significantly smaller (∼ 100 keV/c2) partial

widths than the single pion transition, and are thus negligible [41]. The partial width of the

P-wave one-pion transition depends on the available phase space. For charmed baryons in

HQET, this partial width is given by the following equation [41]:

ΓΣc→Λ+
c π =

1
6π

M2

M1

∣

∣ fp
∣

∣

2 |~p|3 (2.7)

where fp = gA/ fπ; gA is the constituent pion-quark coupling, andfπ = 92 MeV is the pion

decay constant. For the charmed baryons,M2 = MΛ+
c

andM1 = MΣc. The momentum of

the pion in theΣc center of mass (CM) frame is~p. This formula predicts widths forΣ(∗)
c

baryons which are in excellent agreement with world averagedata [1], as can be seen in

Fig. 2.6. Fitting the world average data with the parametergA left free gives:

gA = 0.75±0.05

Eq. (2.7) is also valid forΣb baryons, by replacingM2 with theΛ0
b mass andM1 with

theΣb mass. The momentum of theΣb pion in the CM frame (~p) is precisely determined by

the masses of the particles (Σb, Λ0
b, andπ). In this analysis the mean valuegA = 0.75 is used

to predict theΣb widths. For the predictedΣb masses, the expected widths are relatively

narrow, ranging from 2 to 20 MeV/c2. These narrow widths should make it possible to
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separately measure the doublet states,Σb andΣ∗b, given sufficient resolution on the mass

difference.

In order to separately measure theΣ(∗)+
b and Σ(∗)−

b states, we divide theΣ(∗)
b candi-

dates into two subsamples using the charge of the pion fromΣ(∗)
b decay, denoted byπΣb: in

the Λ0
bπ− subsample theπΣb has the same charge as the pion fromΛ0

b while in theΛ0
bπ+

subsample theπΣb has the opposite charge as the pion fromΛ0
b. Thus, theΛ0

bπ− subsam-

ple containsΛ0
bπ− andΛ0

bπ+ combinations from the decays of the particlesΣ(∗)−
b and the

antiparticlesΣ(∗)−
b , respectively. TheΛ0

bπ+ subsample containsΛ0
bπ+ andΛ0

bπ− combina-

tions from the decays of the particlesΣ(∗)+
b and the antiparticlesΣ(∗)+

b , respectively.
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Table 2.8: Mass predictions forΛ0
b andΣb baryons using various heavy

quark models. All theoretical predictions find an average value for the
Σb charge triplet. Ref. [32] uses the spin averaged massM(Σb) = 1

3(Σb+
2Σ∗b). When two errors are quoted the first is statistical and the second is
systematic.

Reference m(Λ0
b)[MeV/c2] m(Σb)[MeV/c2] m(Σ∗b)[MeV/c2]

[23] 5596 5859 5877

[24] 5585 5795 5805

[25] 5640 5780 5820

[26] 5580 5800 5841

[27] 5547 5714 5766

[28] 5379−5659 5670−5856 ≥ 5710

[29] ≤5630±30 ≥m(Λ0
b)+168

[30] 204(Σb−Λ0
b) 233(Σ∗b−Λ0

b)

[31] 5620±40 5820±40 5850±40

[32] 5623±5±4 (exp. inp.) 5844.0±8.9 (M(Σb)) 23.8±1.6 (Σ∗b−Σb)

[33] 5623±5±4 (exp. inp.) 5824.2±9.0 5840.0±8.8

[34] 5679±71+14
−19 5887±49+25

−37 5909±47+25
−39

[35] 5664±98+33
−46 141±24+30

−22(Σb−Λ0
b) 22±10+7

−6(Σ
∗
b−Σb)

[36] 5629−5663 5844−5871 5874−5900

[37] 5624 5818

[38] 5622 5805 5834
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Table 2.9: Theoretical predictions of isospin mass splittings for theΣc

andΣb states. All predictions are in units of MeV/c2.

Baryons Ref. [39] Ref. [40]

Σ0
c−Σ++

c -3.0 -1.4

Σ−b −Σ+
b +7.1 +5.6

Σ∗0c −Σ∗++
c -2.7 +0.1

Σ∗−b −Σ∗+b +6.5 +5.4

]
2

)      [MeV/cπ)-M(Λ)-M(πΛM(
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2
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 / ndf 2χ  3.935603e-03 / 1
Prob   9.499779e-01

p0        0.000000e+00± 2.285000e+03 

p1        4.571608e-02± 7.401226e-01 

 / ndf 2χ  3.935603e-03 / 1
Prob   9.499779e-01

p0        0.000000e+00± 2.285000e+03 

p1        4.571608e-02± 7.401226e-01 

(Q)
cΣΓ

 data(*)++
cΣfit to 

=0.75Ag

Figure 2.6: The plot on the left shows the intrinsic widthΓ of Σc baryons
(dashed line) andΣb baryons (solid line) according to Eq. (2.7) as a func-
tion of the decayQ value, defined asQ= m(Σc,b)−m(Λc,b)−mπ. Points
with error bars show the world average values forΣc andΣ∗c [1]. The plot
on the right shows the fit to the world average data with the parametergA

floating.
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Chapter 3

Experimental Apparatus

The data used in these analyses was collected by the Collider Detector at Fermilab

(CDF), a general multi-purpose detector installed at the Fermi National Accelerator Labo-

ratory (Fermilab or FNAL). This chapter gives a synopsis of the accelerator complex and

the detector, concentrating on those components of the detector with the most impact on

theB∗∗ andΣb analyses.

3.1 The Tevatron

The Tevatron was built in the early 1980’s at the Fermilab in Batavia, Illinois, USA.

The Tevatron was designed to accelerate protons and antiprotons to one TeV of energy. In

the late 1980s, the Tevatron achieved a center of mass energyof 1.8 TeV. A major upgrade

of the Tevatron took place between September 1997 and March 2001. Since that time, the

Tevatron operates with a center of mass energy of 1.96 TeV. All collider operations since
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Figure 3.1: Diagram of the Tevatron collider chain.

the upgrade are referred to as “Run II,” with the previous operations referred to as “Run I.”

Run II is scheduled to last until the end of Fiscal Year 2009, with an integrated luminosity

goal of 8 fb−1. Early in 2007, the Tevatron had already delivered over 2 fb−1 of integrated

luminosity, with a record initial luminosity of 2.85 ×1032 cm−2s−1.

Fig. 3.1 shows a diagram of the Tevatron collider. Protons (p) and antiprotons ( ¯p, the

antimatter equivalent to the proton) are accelerated via a chain of smaller accelerators, be-

ginning in a Cockroft-Walton tower. Initially, electrical discharges in hydrogen gas produce

H− ions. These ions are accelerated in the Cockroft-Walton up toan energy of 750 keV.
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The ions then enter a 500 foot long linear accelerator, called the Linac, which uses cavities

with time alternating electromagnetic fields to acceleratethe H− ions to 400 MeV. The AC

nature of the Linac separates the continuous beam of H− ions from the Cockroft-Walton

into bunches. Next, the bunches of H− ions enter the Booster ring, a synchrotron accelera-

tor of 475 m in circumference. At this point the ions pass through a thin carbon foil which

removes the two electrons, leaving only a bare proton. The Booster ring accelerates the

protons to 8 GeV and sends them to the Main Injector ring.

The Main Injector ring serves two purposes: it accelerates protons to 150 GeV for

injection into the Tevatron ring, and it also accelerates protons to 120 GeV for the purpose

of producing antiprotons. The 120 GeV proton bunches are taken from the Main Injector

to the antiproton source accumulator, where they are collided with a nickel alloy target.

Antiprotons are produced through the interactionp+ p→ p+ p̄+ p+ p̄. At Fermilab, the

production efficiency for this procedure is∼ 16×10−6; thus for every 1 million protons

to hit the target, about 16 antiprotons are produced. The remaining proton collisions result

in many different particles which must be removed before theantiprotons can be collected.

This is done using a lithium lens to focus the particles followed by a pulsed dipole magnet

in which only negatively charged particles with the proton mass will bend at the correct

angle to continue in the accelerator. The produced antiprotons have a large energy spread

and must be stochastically “cooled” in the Debuncher to bring them all to the same energy.

The antiprotons are then sent to the Accumulator, where theyare further cooled and stored.

Once enough antiprotons have collected in the Accumulator,they are injected into the
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Recycler in the Main Injector where they are even further cooled and accelerated before

being injected into the Tevatron ring.

The Tevatron is the final accelerator, and is a superconducting synchrotron with a radius

of about one kilometer. The Tevatron accelerates the protons from the Main Injector and

antiprotons from either the Recycler or the Accumulator to the final collision energy of 980

GeV. At this energy, it takes about 21µs for one full revolution. The protons and antiprotons

travel around the Tevatron ring in bunches of 36 each. At the CDF and DØ detector sites,

the proton and antiproton beams are focused by superconducting quadrupole magnets to a

width of approximately 35µm and the beams are crossed to induce collisions. The sharp

focus of the bunch width at the collision site leads to a de-focusing of the length; although

each proton or antiproton bunch is only 35µm across, it is typically about 30 cm long.

3.2 The Collider Detector at Fermilab

TheB∗∗ andΣb analyses use data from the CDF II detector, an azimuthally andforward-

backward symmetric particle detector for studyingpp̄ collisions in Run II of the Tevatron.

A comprehensive description of the detector may be found in Ref. [42]. The CDF II detec-

tor was designed as a general purpose particle detector which combined precision charged

particle tracking with fast projective calorimetry and finegrained muon detection. The

CDF II detector is capable of making many different physics measurements and may be

used in the search for new particles and new physics. The maindifferences of the Run II
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Figure 3.2: Cross-sectional view of the CDF II detector. The detector is
roughly three stories tall and weighs about 5 kilotons (including the outer
muon walls).

detector from the Run I detector [43] are the replacement of the central tracking systems,

the replacement of a gas sampling calorimeter with a scintillating tile calorimeter in the

plug forward region, the addition of preshower detectors and a time-of-flight detector, ex-

tension of the muon coverage, and upgrades of the trigger, readout, and data acquisition

systems.

The detector is run and maintained by the CDF Collaboration, a multi-national collab-

oration of over 800 physicists from more than 60 institutions. A schematic diagram of the

CDF II detector is shown in Fig. 3.2. The following sections highlight different aspects of

the detector.
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3.2.1 Detector Apparatus

The CDF II detector was designed to be cylindrically symmetric around the beamline,

and also forward-backward symmetric with respect to thepp̄ interaction point. CDF II uses

a cylindrical coordinate system with thez-axis along the nominal beamline. The transverse

plane(x,y) is perpendicular to thez-axis. The azimuthal angle,φ, is measured from the

x-axis. The polar angle,θ, is measured from thez-axis. Pseudorapidity is defined asη ≡

tanh−1(cosθ).

The detector is composed of many independent subsystems, each designed to provide

some measurement of the outgoing particles. Most of these subsystems are described in

great detail in the original CDF II technical design report [44].

Tracking Systems

Precision charged particle tracking is crucial for most CDF II analyses, and particularly

for the study ofb hadrons. The tracking systems occupy the space closest to the pp̄ interac-

tion point and consist of two primary subsystems, a silicon microstrip detector and a wire

drift chamber. The tracking systems are located inside of a superconducting solenoid which

produces a 1.4 Tesla field along the beamline direction; the solenoid encloses a region 2.8

m from the nominal beamline and is 3.5 m long. Charged particles in a uniform magnetic

field move with helical trajectories; the curvature of the helix is used to determine both the

charge and the momentum of the particle. A cutaway view of onequadrant of the tracking

volume is shown in Fig. 3.3.
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Figure 3.3: Cutaway view of one quadrant of the CDF II tracking sys-
tems. The tracking region is surrounded by the solenoid and endcap
calorimeters.

Silicon Systems

Solid state detectors make high-precision trackers. Silicon in particular is readily avail-

able due to its commercial applications, and possesses excellent electrical and ionization

properties for use in a detector. Charged particles enteringa semiconducting material such

as silicon will ionize in the bulk of the material, producingelectron-hole pairs. The elec-

trons act as negative charge carriers while the holes act as positive charge carriers. The

semiconductor may be “doped” by adding atoms of another element into the silicon lattice.

If the doping atoms have more electrons than silicon atoms, the silicon is called “n-doped”

because there are now more electrons than holes. If the doping atoms have fewer electrons

than silicon, the silicon is “p-doped.” When p-doped and n-doped silicon are brought into

contact, what forms is known as a pn junction. The free chargecarriers in the p and n
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Figure 3.4: Left: End view of the CDF II silicon system, with all three
silicon subsystems labeled. Right: Side view of half of the CDFII silicon
system. Note that the scale of thez-coordinate is highly compressed in
this figure.

silicon will recombine at the area of contact, creating a depleted region at the junction with

no free charge carriers.

Silicon sensors consist primarily of one type of silicon, usually n-doped. Strips of the

oppositely doped silicon (usually p-doped) are then applied on top of the bulk silicon. To

measure the ionized electrons from a charged particle, which would ordinarily be impos-

sible to detect due to the large number of free charge carriers, the entire silicon sensor

must be depleted by applying a voltage across the sensor. Ionized electrons from charged

particles drift through the bulk towards the strip on top, where the charge is collected.

The CDF II silicon system consists of three subsystems: the Layer 00 (L00), Silicon

Vertex (SVX II), and Intermediate Silicon Layer (ISL) detectors [45]. Diagrams of the

silicon subsystems are shown in Fig. 3.4.
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Figure 3.5: End view of the L00 silicon detector, shown surrounded by
the two inner layers of the SVX II detector.

The L00 silicon detector [46] is not part of the CDF II technical design; it was in-

troduced later as an enhancement to the silicon system to improve the impact parameter

resolution on tracks and thus the efficiency of tagging jets from b quark production [47].

The L00 detector consists of 48 radiation-hard single-sided silicon wafers mounted directly

on the beam pipe. Each wafer uses p-doped strips implanted onan n-doped substrate. The

strips have a pitch of 25µm and width of 8µm, although the readout pitch is 50µm since

only alternating strips are used. The silicon wafers have two different widths, 8.4 and 14.6

mm. These wafers are interleaved in a 12-sided pattern as shown in Fig. 3.5. The inner

(outer) wafers are at a radius of 1.35 (1.65) cm from the nominal beamline. The length of

the entire L00 detector is 90.0 cm. To reduce the flow of free charge carriers and prolong

the life of the detector, the silicon wafers are cooled to−10 Celsius.
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Around the L00 detector are the five layers of the SVX II detector [45]. The innermost

SVX II layer is located 2.44 cm from the beamline and the outermost layer is at 10.6 cm.

The SVX II silicon wafers are all double-sided, with a bulk material that is nearly pure

silicon, although slightly n-doped. On one side, all wafershave p-doped strips running in

the axial direction. Depending on the layer, these axial strips are spaced 60-65µm apart

with widths of 14-15µm. On the other side are n-doped strips running either at a small

stereo angle or at 90◦ relative to the axial direction. The pattern for the stereo layers, from

innermost to outermost, is (90◦, 90◦, −1.2◦, 90◦, +1.2◦). The stereo strips are spaced at

(141µm, 125.5 µm, 60µm, 141µm, 65µm) from innermost to outermost, and the widths

are 20µm for the 90◦ strips and 15µm for the small angle stereo strips. The SVX II silicon

wafers are arranged in ladders that are four wafers long. Thefive layers are supported by

a barrel structure with space for the silicon cooling lines.The SVX II system consists of

three of these barrels placed end-to-end, with the nominal beamspot in the middle of the

central barrel. The length of the entire SVX II detector is 87.0 cm, and these silicon wafers

are also cooled to−10 Celsius.

As shown in Fig. 3.4, the ISL detector [48] is located betweenthe SVX II and the drift

chamber. There is more space available for the ISL than the SVX, which allows for an

overlapping silicon ladder structure. The ladders within each barrel are staggered, as with

the L00 ladders. The central barrel ladders consist of one layer with staggered radii of

22.6 cm and 23.1 cm. The forward barrel ladders consist of twolayers; the inner layer is

staggered at radii of 19.7 cm and 20.28 cm, while the outer layer is staggered at radii of
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28.6 cm and 29.0 cm. The purpose of the outer forward layer is to increase the tracking

acceptance in the forward region. The inner layer extends to|z|= 65 cm in length while the

outer layer extends to|z|= 87.5 cm. As with the SVX II, the ISL sensors are double-sided

with one side having strips in the axial direction and the other side at a 1.2◦ small angle

stero. Whether the stereo strips are placed on the n or p side varies by wafer manufacturer1.

The strip pitch on both sides of the ISL sensors is 112µm. Since the ISL ladders are located

farther from the beamline, they do not suffer from as much radiation damage as the L00 and

inner SVX II ladders. The portcards for data readout and control signals are also located

on the ISL cooling lines. Thus, the ISL is cooled only to+6 Celsius.

Wire Drift Chamber

The rest of the tracking volume is occupied by a wire drift chamber, called the central

outer tracker (COT) [49]. Charged particles entering a wire drift chamber ionize the gas

inside the chamber. The resulting free electrons are in an electric field and will “drift”

toward the anode (sense wires) and away from the cathode (field wires).

The COT is a cylindrical drift chamber with an inner radius of 43.4 cm and an outer

radius of 132.3 cm from the beamline, with a total length of 310 cm. The chamber is

filled with a 50:50 mixture of argon and ethane. Each measurement layer of the COT

is comprised of 96 sense wires organized into 8 superlayers of 12 wires each. The even

numbered superlayers (2, 4, 6, and 8) are axial, oriented parallel to the beamline, while the

1The stereo strips are on the n side for Micron sensors and on the p side for Hamamatsu sensors.

49



odd numbered superlayers (1, 3, 5, and 7) are at±2◦ stereo relative to the beamline. The

stereo wires allowz measurements with a precision of less than 5 cm. Each superlayer is

divided into “super cells” inφ, consisting of one wire plane and one field plane on each

side. Each wire plane contains the 12 sense wires along with 13 potential wires and 4

field shaping wires. Because the chamber is in a magnetic field,the free electrons do not

drift in a straight line. To account for this, the cells are tilted at 35◦ with respect to the

r direction. This also means that for low momentum tracks, thepositively charged tracks

whose trajectories bend in the same direction as the cells are tilted have higher tracking

efficiency, because they cross more wires before exiting thedrift chamber. This effect is

negligible for higher momentum tracks, which have a larger radius of curvature. A diagram

of the cell layout for superlayer 2 is shown in Fig. 3.6 along with the arrangement of all the

cells on the COT endplate.

Time-of-Flight System

Directly outside of the COT is installed a time-of-flight (TOF) system based on plastic

scintillators and fine-mesh photomultipliers. The TOF measurement can achieve a 2 stan-

dard deviation separation between kaons and pions for momenta less than 1.6 GeV/c. The

TOF measurement and the energy loss dE/dx measured in the COT are used for particle

identification at CDF II.
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Figure 3.6: Left: Nominal cell layout for superlayer 2 in thecentral outer
tracker (COT) wire drift chamber. Other superlayers (including the stereo
layers) are similar except for the taper. Right: Arrangementof cells on
the COT endplate.

Calorimeter Systems

Outside of the tracking volume, the goal is to measure the energy of particles, which

requires stopping the particle and collecting all the energy deposited in the detector. This is

done using various calorimeter systems. In high energy physics, the basic calorimeter con-

sists of a layer of an absorber followed by a layer of a scintillating material2. The particles

interact in the absorber, resulting in a “shower” of photonswhich enter the scintillating ma-

terial. The energy deposited in the scintillator produces scintillation light (luminescense)

via excitation and de-excitation of atomic electrons; the exact mechanism depends on the

2For electromagnetic calorimetry, it is also possible to usea scintillating material as the absorber. This
would be a homogeneous calorimeter rather than a sampling calorimeter.
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type of scintillator. The scintillation light is collectedby photomultiplier tubes (PMTs).

The design of the calorimeter depends on the type of particleto be detected. CDF II uses

two main physical calorimeter systems: central calorimeters which surround the tracking

volume, and plug calorimeters which are located forward andbackward of the tracking re-

gion. Each of these systems is comprised of an inner electromagnetic calorimeter and an

outer hadronic calorimeter.

Electromagnetic calorimeters are designed to stop electrons, which interact with the

absorber primarily through ionization and bremsstrahlungradiation, and photons, which

interact through the photoelectric effect, Compton scattering, and pair production. CDF

II also employs an imbedded two dimensional readout strip chamber at the expected point

of the shower maximum, appropriately called a shower max detector. The purpose of

this detector is to get position measurements to match with tracks and map the transverse

shower profile. It can help identify electromagnetic showers, and separate photons from

neutral pions. Hadronic calorimeters are designed to stop hadrons such as pions, kaons,

and protons. Here there are many more complicated interactions at work, from strong

interactions as well as electromagnetic. The particles involved are all much more massive

than electrons and more absorbing material is needed to stopthem in the detector.

CDF II’s central calorimeter consists mainly of four systems: the central electromag-

netic (CEM) and shower max (CES) [50], central hadronic (CHA) and wall hadronic

(WHA) [51] calorimeters. The plug calorimeter has primarilythree systems: the plug elec-

tromagnetic (PEM), plug shower max (PES), and plug hadronic(PHA) calorimeters [52].
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Figure 3.7: Cross-section of the upper half of CDF II’s end plug
calorimeter.

A cross section of the plug calorimeters is shown in Fig. 3.7.The electromagnetic sam-

pling calorimeters are made of lead sheets interspersed with polystyrene scintillator, while

the hadronic calorimeters use steel absorber with acrylic scintillator.

Muon Chambers

The calorimeters should stop most electrons and hadrons. However, muons are over 200

times heavier than electrons and interact only weakly with matter. Consequently, muons

will deposit little of their energy in the electromagnetic and hadronic calorimeters, so the
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outermost layers of the detector are dedicated to muon detection; any particle which makes

it to the muon chambers is assumed to be a muon. CDF II uses single wire drift chambers

for muon detection, which work on the same premise as the COT: charged particles ionize

the gas in the chamber and the ionization electrons drift toward the sense wire. The gas

used in the muon chambers is again a 50:50 mixture of argon andethane. Beyond the

drift chambers are scintillation counters which are used for timing and reject backgrounds

from out-of-time interactions. The configuration of the central muon chambers is shown in

Fig. 3.8 (right).

The CDF II muon system is comprised of four similar detector systems which are distin-

guished by their physical locations and configurations. Most of the muon chambers were

also part of the CDF Run I detector. The coverage of each system in the azimuthφ and

pseudorapidityη is mapped in Fig. 3.8 (left). The Central Muon Detector (CMU) covers

the region beyond the central calorimeters. The Central MuonUpgrade (CMP) also covers

the central region, but there is an extra 60 cm of steel absorber between the CMU and CMP

to reduce non-muon backgrounds even further. The Central Muon Extension (CMX) exists

to extend the coverage in bothφ andη. It consists of arches of muon detectors arranged at

each end of the central detector. The fourth system is new to CDF Run II; it is called the In-

termediate Muon Detector (IMU) and is comprised of CMP-like chambers which surround

the beamline on either side of the detector. The IMU is used inconjunction with tracking

to identify muons in the forward regions.
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Figure 3.8: Left: Extent of CDF II’s muon detector coverage inthe az-
imuth φ and pseudorapidityη. Right: Detail of the configuration of steel
absorber, wire chambers, and counters for the Central Muon Upgrade
(CMP) walls.

Luminosity Measurement

The beam luminosity is determined using gas Cherenkov counters located around the

beamline in the forward region (3.7< |η|< 4.7). The Cherenkov counter (CLC) has excel-

lent timing resolution. This makes it possible to measure the luminosity of each bunch of

protons and antiprotons. The CLC may then also separate collisions from particles in the

bunches from beam losses, which are typically out of synchronization with the bunches in

the Tevatron. The amplitude of the signal is proportional tothe number of proton-antiproton

interactions and is converted into a luminosity measurement with a 6% systematic uncer-

tainty, primarily due to the error on the knowledge of the inelastic pp̄ cross-section.
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3.2.2 Trigger Systems

The trigger and data acquisition systems must accommodate the high data rates at CDF

II; the collision rate for Run II is about 1.7 MHz, while the maximum rate at which events

can be recorded on tape is only about 75 Hz. CDF II has implemented a 3-tier trigger

system to reduce the data volume, with each level providing enough of a rate reduction to

allow the next level sufficient processing time. A block diagram of the first two trigger

levels is shown in Fig. 3.9, with the levels described brieflybelow.

Level-1

The Level-1 (L1) is the first trigger level to make a decision to accept (L1A) or reject

(L1R) an event. The L1A rate is limited to about 25 kHz based on the time needed by the

Level-2 triggers; thus, it must be implemented at the hardware level. In fact, L1 is a syn-

chronous hardware trigger in which the decision always occurs at a fixed time,∼ 5 µs after

a beam collision. The L1 decision is made using data only fromthe COT, the calorimeters,

and the muon detectors. The CDF II detector can also do a preliminary track finding at

the L1 trigger level. For example, tracks can be matched to clusters in the electromagnetic

calorimeters and to stubs in the muon detectors to allow for electron and muon identifica-

tion respectively at L1.

In the first step of L1 processing, the data from only the four axial superlayers of the

COT is sent to the eXtremely Fast Tracker (XFT). The XFT is a highly parallel piece of

custom hardware designed to process the data from each bunchcrossing. After tracks have
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been reconstructed by the XFT, they are sent to the extrapolation unit (XTRP). The XTRP

extrapolates the COT tracks out to the calorimeter and muon detector systems using look-

up tables. This track information is then passed to each of the L1 subprocesses: L1CAL,

which triggers on objects like electrons, photons, jets, total transverse energy, and miss-

ing transverse energy; L1MUON, which finds single and dimuonobjects; and L1TRACK,

which makes a trigger decision based only on the XTRP track information, such as for

tracks with high transverse momentum. The decisions from each subprocess are then sent

to the Global Level-1 hardware which makes a final L1 decisionbased on AND/OR com-

binations of the different subprocesses. In the case of a L1A, the event is then buffered for

analysis at Level-2.

Level-2

The Level-2 (L2) is an asynchronous combination of hardwareand software triggers.

The average L2 processing time is∼ 30 µs, with a L2A rate of about 600 Hz based on the

time needed by the Level-3 trigger. The L2 processing of an event begins as soon as the

event is written to a L2 buffer. There are only four L2 buffers, and while the data in one

of the buffers is still being analyzed that buffer cannot be used for new events. Deadtime

occurs when all four L2 buffers are filled simultaneously. The L2 decision uses all of the

data used at L1 but at a higher precision; for example, the momentum resolution of the

XTRP tracks is improved. Additionally, L2 uses data from the SVX II silicon detector and

the electromagnetic shower max detectors.
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The data from SVX II and the tracks from the XTRP are combined inthe Silicon Vertex

Tracker (SVT). In order to include silicon information, theSVT must be able to quickly

reconstruct 2-D tracks with an accuracy comparable to that of a full offline analysis. This

is particularly important for findingb hadrons; these hadrons have a relatively long lifetime

(∼ 10−12 s), and those generated at CDF II have enough momentum that they typically

travel a few millimeters before decaying. The daughter particles of ab hadron will be

displaced from the primary vertex of the interaction and thus have a large impact parameter

d0. The SVT is the first trigger in a hadronic experiment capableof precisely measuring

and selecting on the impact parameter of tracks. This ability has substantially increased the

b physics reach of the CDF II detector.

The architecture of the SVT trigger is shown in Fig. 3.10. Thefirst step of the SVT

is to read out the information from the SVX II and run that information through a Hit

Finder. The Hit Finder looks for clusters of SVX strips registering a hit and finds the

centroid of each cluster, which is the most probable track intersection point. The cluster

information goes to the Associative Memory chips, which contain patterns of valid particle

trajectories or “roads.” The track information from the XFTis also taken into account,

and the track candidates are checked against all possible patterns. If the track candidate

matches a pattern, the road is then sent on to the Hit Buffer. The Hit Buffer collects the

necessary track information for each road (four SVX II hits and two XFT measurements)

and sends it on to the Track Fitter. Here each road is modeled with a linear approximation,

which is then used to apply the L2 trigger selection.
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The shower max detectors are used to reduce the trigger rate for electrons and photons

by requiring a cluster above a threshold (XCES). This reducesthe background from a

single photomultiplier tube discharge, and improves the resolution of matching a track to a

calorimeter wedge. The Level-2 Cluster Finder (L2CAL) reduces the trigger rate for jets.

The L1CAL considers information from each calorimeter towerseparately, although jets

are not usually contained within a single calorimeter tower, so the trigger threshold must be

set lower for the L1 trigger to be efficient. At L2, continuousregions of calorimeter towers

are combined to form clusters, allowing a higher trigger cutto be applied to the cluster’s

total transverse energy.

All of the L2 information, from the SVT, track and muon information, XCES, and

L2CAL, is passed on to the Global L2 decision making hardware.If an event is accepted

(L2A), the full detector is read out for that event.

Level-3

In order to decrease the time required to make a decision, theL1 and L2 triggers use

only a small predefined subset of the event data. Pending a L2A, the full event data is stored

on several buffers. After a L2A, the stored data is retrievedby the Event Builder. The Event

Builder is a small farm of Scanner CPUs which put together the fragmented event data and

pass the entire event along to the Level-3 (L3) trigger farm.

The L3 farm is made of 16 subfarms; each subfarm consists of 10-15 processing nodes

and one converter node. A converter node receives the event from the Event Builder and
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distributes the event to the next available processor in itssubfarm. Each converter node has

multiple event buffers, so it can receive a new event while still in the process of distribut-

ing another. The processor nodes are PCs running L3 reconstruction code, which fully

reconstructs the event and checks all possible trigger paths before making the final trigger

decision. Rejected events are discarded, while accepted events are sent to the Consumer

Server Logger (CSL). The CSL writes the event data to disk whereit will soon (in about

24 hours) be transferred to tape. The CSL also distributes a small fraction of events to the

online consumer monitoring programs which verify data quality.
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Figure 3.9: Block diagram of the CDF II trigger system, for Level 1 and
Level 2 only. The CLC and TOF triggers are not shown here.
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Chapter 4

Data and Monte Carlo Samples

4.1 Data Reconstruction

4.1.1 Trigger Paths

Each event accepted after Level-3 trigger reconstruction carries with it a history of

the trigger requirements it satisifed at each trigger level. An event is written to a specific

data stream depending on which trigger requirements it fulfills. A typical store of protons

and antiprotons in the Tevatron lasts around 24 hours. During that time, the luminosity

decreases from an initial value of∼ 250×1030 s−1 cm−2 to ∼ 40×1030 s−1 cm−2. The

trigger system is designed to avoid high deadtime at high luminosities, but as the luminosity

decreases, the trigger rates decrease and more trigger bandwidth becomes available. Many

clever ideas have gone into improving trigger performance while collecting as much data

as possible. One method is defining several trigger paths with similar requirements; one
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with stricter requirements is used at high luminosities to limit the number of events passing,

while one with looser requirements is used at lower luminosities. Another method in use at

CDF II is prescaling high rate triggers; for example, a prescale of 10 on a L2 trigger path

means that for every 11 events that pass on that trigger path at L2, 10 are rejected and the

11th is accepted. As the luminosity decreases, the prescales are relaxed.

When performing an analysis, we find the trigger path on which events pertinent to

our analysis would be accepted and then reconstruct events only in the corresponding data

stream. This prevents every analysis from running analysiscode over the entire CDF II

dataset. TheB∗∗ analysis, which reconstructs two differentB+ decay chains, uses two

trigger paths: theJ/ψ dimuon trigger and the hadronic two displaced track SVT trigger.

TheΣb analysis also uses the hadronic two displaced track SVT trigger.

The J/ψ dimuon trigger [53] searches for two tracks withpT > 1.5 GeV/c match-

ing to stubs in the muon chambers at Level-1. A maximum opening angle of∆φ < 135◦

between the two tracks is also enforced at the trigger level.At Level-2, the tracks are re-

quired to have opposite charge and to form a transverse massmT such that 1.5 < mT <

3.25 GeV/c2. At Level-3 the invariant dimuon massm is required to be in the range

2.85< m< 3.25 GeV/c2. This is a low rate trigger because of its clean dimuon signal.

Thebhadronic trigger relies on the SVT described in Sec. 3.2.2 tolocate two tracks with

large impact parameters, indicating they are displaced from the primary vertex. This can

be a very high rate trigger, especially at high luminositieswhere there are many secondary

tracks present. Thus three separate trigger paths have developed with different prescales:
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the nominal (B CHARM), the low pT (B CHARM LOWPT), and the highpT (B CHARM HIGHPT)

[54]. The requirements for each path are outlined in App. A.

4.1.2 Offline Track Reconstruction

As explained in Sec. 3.2.1, charged particles in the CDF II tracking volume move with

helical trajectories. CDF II primarily uses a cylindrical coordinate system with thez-axis

along the nominal beamline. The transverse plane(x,y) is perpendicular to thez-axis.

There are five track parameters used at CDF II to describe particle trajectories:

• c = 1
2ρ , half-curvature of the track, whereρ is the radius of the circle made by a

projection of the trajectory into the transverse plane.

• d0, signed impact parameter of the track (the distance of closest approach to the

primary vertex).

• z0, z-position of a track at its point of closest approach to the primary vertex.

• φ0, azimuthal angle of the track at its point of closest approach to the primary vertex.

• cotθ, cotangent of the polar angleθ at the point of closest approach to the primary

vertex.

Other useful quantities are:

• y = tanh−1β, whereβ = v/c (particle velocity divided by the speed of light), is the

relativistic rapidity.
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• η≡ tanh−1(cosθ), pseudorapidity, is a good approximation to the true rapidity y.

• pT = psinθ, transverse momentum (component of the particle’s momentum pro-

jected onto the transverse plane).

• Lxy, distance the particle travels from the primary vertex in the transverse plane before

decaying.

• ct = Lxy
mc
pT

, wherem is the mass of the particle andc is the speed of light, is the

proper decay length of the particle.

Tracks are reconstructed using data taken by the COT and silicon tracking systems.

Because the COT is at a larger radius from the interaction, the track density is lower there

than in the silicon. Thus track reconstruction begins by looking for clusters of hits in the

COT. The hits are then linked into straight segments, and the segments are joined into

tracks. Tracking is done in the silicon using the COT tracks asseeds. A “window” is

defined using the point of a COT track’s intersection with the outermost layer of silicon,

and all silicon hits within that window are attached to the COTtrack one at a time with a

fit performed in each case. The output of this fit is used to define a window for the next

layer of silicon, and the process repeats until all layers have been searched. It is possible to

have multiple tracks resulting from one COT seed track if it attaches more than one valid

combination of silicon hits. The best one is chosen based on theχ2 of the fit and the number

of attached silicon hits. This is referred to as “Outside-In” tracking.
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There will still be some unattached silicon hits after all COTseed tracks have been

attached to silicon hits. A standalone silicon tracking algorithm has been developed to per-

form track reconstruction using these hits [55], which are particularly useful in the forward

region not covered by the COT. The full list of requirements for a default good quality track

(defTracks) are listed in App. B.1.

4.1.3 Track Refitting

The tracks reconstructed from the detector information arenot ready to be used in an

analysis until several additional effects are considered.

The first effect is Multiple Coulomb Scattering (MCS) in the COT volume. This is a

statistical description of the scattering angle of a particle as a result of many small interac-

tions with atomic electrons. These interactions have the most impact on incoming particles

with low energy. For reconstructed COT tracks, not accounting for MCS results in an un-

derestimation of the errors on track measurements. To correct for MCS, the elements of

the track covariance matrix must be rescaled as reported in Ref. [56].

The second effect is the energy loss of a particle due to interactions with both the active

and passive materials in a detector. As the particle loses energy its momentum decreases,

and thus the curvature of the track changes along the particle’s path. The previous track

reconstruction assumed the same curvature along the entirepath. The energy loss per unit

length in a material is dependent on the type of particle being tracked, as the interaction

cross-sections change for different particles. The tracksmust be refit taking this into con-
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sideration. The refit is performed separately for pion, kaon, and muon track hypotheses

using a Kalman fitter [55]. Ref. [56] also makes a measurement of the magnetic field in-

side the tracking volume and a description of the silicon geometry, both of which contribute

to track refitting.

4.1.4 The Universal Finder

Tracks are combined to reconstruct particle decays using anevent reconstruction pack-

age. The analyses in this thesis use the Universal Finder reconstruction package [57]. This

is an object-oriented program in which each track is considered an “object” with properties

such as momentum and mass. The Universal Finder reconstructs the candidates in a decay

from the bottom up. For example, the decay1 B+→ J/ψK+ with J/ψ→ µ+µ− begins by

finding two track objects which satisfy all muon criteria. The tracks are combined to form a

J/ψ candidate, which must satisfy its own set of selection criteria. The program then finds

a track which satisfies the criteria for the kaon, and combines that with theJ/ψ. Finally,

the kaon andJ/ψ are reconstructed as aB+ candidate.

For both theB∗∗ and Σb analyses, no particle identification information is used for

the tracks. Thus, all particle hypotheses consistent with the candidate decay structure are

attempted at each step. In the example above, while searching for a kaon to reconstruct the

B+, all tracks consistent with theJ/ψ decay vertex are assumed to be kaons.

1Unless otherwise noted, any reference to a specific charge state implies the charge conjugate state as
well.
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4.2 Monte Carlo Generation

All Monte Carlo samples are generated in the CDF II analysis framework, and involve

the successive use of the following steps (performed by different executables):

• Event generation (cdfGen):This phase begins with an event generator which cre-

ates an event. In our Monte Carlo samples, we use either thePYTHIA [58] or

BGenerator [59] software packages. After the generation, a decayer program runs

to decay the generated particles. For our Monte Carlo samples, we use either the

EvtGen [60] or QQModule [61] software packages. At this point we may force

our b hadrons to decay only in a specified channel, such asB+ → J/ψK+ and

J/ψ→ µ+µ−.

• Detector simulation (cdfSim): This phase runs a detailed simulation of the CDF

II detector using theGEANT software package [62]. The CDF II detector simula-

tion operates at the level of hits for all detector components except the calorimetry,

where the shower evolution is computationally prohibitive. However, the tracking,

especially the hits in the silicon detector, are simulated at a very detailed level, and

include the strip-to-strip variations in performance as well as the generation of ran-

dom noise throughout the detector. The output of cdfSim looks like the output from

the CDF II data acquisition system.

• Trigger simulation (TrigSim++): The detector-like information is then fed into a

trigger emulation system developed at CDF. The TrigSim++ runs as a filter, and
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transmits only those Monte Carlo events which would pass the real trigger system.

• Event reconstruction (ProductionExe): Events which pass the trigger simulation

are processed with the standard CDF II production executable. At this stage, the hits

in the muon chambers (CMU, CMP, and CMX) are reconstructed and linked into

muon stubs. The hits in the COT are reconstructed and linked into COT tracks. The

COT tracks are then extrapolated and matched with the muon stubs. The other tracks

are also extrapolated into the silicon detector where silicon hits are attached to these

tracks. The output of ProductionExe has the same format as the final CDF II data.

• Analysis reconstruction (Universal Finder): Finally, the Monte Carlo data is re-

constructed by the same analysis code used to reconstruct the decay mode in data.

4.3 B∗∗ Data Samples

TheB∗∗ analysis is based on events collected by the CDF II detector from March 2002

to August 2004, for a total integrated luminosity of 374± 22 pb−1 of data. The CDF

II production version of this data is the 5.3 series, and the tracks are refit using CDF II

software version 5.3.4. We require only basic good run status, along with the COT and

SVX offline good run bits set (see App. B.2 for a description of the good run criteria).

TheB∗∗ is reconstructed in twoB+ final states:B±→ J/ψK± with J/ψ→ µ+µ−, and

B±→ D̄0π± with D̄0→ K±π∓. For both samples, the following procedure is applied to all

tracks. First, the tracks are refit according to the assumed particle hypotheses to account
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for energy loss in the passive material of the detector. For this analysis, we did not use

the L00 silicon hits. The detector alignment version is specified through the calibration

pass number. For this analysis, we used calibration 16, almost the final detector alignment

calibration. All tracks must pass thedefTracks requirements listed in App. B.1. Addition-

ally, tracks were required to havepT > 400 MeV/c,|η| < 2.0, and at least 3 axial silicon

hits in different layers of the SVX. This analysis was one of the first to use the inside-out

standalone silicon-seeded tracks. Consequently, we study the effect these tracks have on

the mass resolution, with the results documented in Sec. 5.1.4.

The decay reconstruction is performed by the Universal Finder described in Sec. 4.1.4.

Higher level candidates such as theB+ andJ/ψ are reconstructed from tracks by fitting

the tracks for a common decay vertex, using theCTVMFT C++ wrapperVertexFit [63].

Full fit results for each candidate are stored in the output ROOT ntuple [64]. The decay

reconstruction for each channel is described in detail in Secs. 4.3.1 and 4.3.2.

4.3.1 Reconstruction ofB±→ J/ψK±

TheJ/ψ dataset is based on the compressed dimuon trigger sample [53]. The dimuon

trigger requires two tracks withpT > 1.5 GeV/c which match to the stubs in the muon

chambers. The muons are constrained to pass through a commonpoint usingVertexFit.

Pairs of oppositely charged muons are then combined to form aJ/ψ candidate. At this

level the invariant mass of theµ+µ− pair must lie between 2.9 and 3.3 GeV/c2.

The kaon candidates are tracks withpT > 1.0 GeV/c that are consistent with theJ/ψ
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decay vertex. Theµ+µ− invariant mass is constrained to theJ/ψ mass [1] before deter-

mination of theµ+µ−K decay point. The transverse momentum of the combined system

must satisfypT(µ+µ−K) > 4.0 GeV/c, and the invariant mass of theµ+µ−K triplet must lie

between 4.9 and 5.7 GeV/c2.

For theB+ → J/ψK+ decay channel, we use selection criteria optimized during the

studies to develop a method of determining the flavor ofB0 mesons at production [65].

A full optimization based onS/
√

S+B, whereS is the number of signal events andB is

the number of background events, was performed as part of this study. However, these

optimized cuts left a large amount of background under theB+ signal peak. To reduce

the background level, we added an impact parameter cut of|d0(B)| < 50 µm. The final

selection criteria are listed in Tab. 4.1.

We also made a high purity sample ofB∗∗ candidates by applying an isolation cut to

the B meson, which selectsB candidates with few surrounding tracks. For this sample,

we removed all candidates which passed theB selection criteria but had more than one

surrounding track which passed theB∗∗ track selection criteria (listed in Tab. 5.1), using a

track pT cut of 400 MeV/c rather than 700 MeV/c. The 400 MeV/c pT cut translates into

a stricter isolation cut which reduces the background considerably. The mass distributions

for both the high and low purityB+→ J/ψK+ samples are shown in Fig. 4.1 with a mass

fit (described below) superimposed.
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Table 4.1: Selection criteria for the decayB±→ J/ψK± (J/ψ→ µ+µ−).

Candidate Cut Value Units

µ± pT > 1.5 GeV/c

J/ψ |m(J/ψ)−3096.88| < 80 MeV/c2

K pT > 1.2 GeV/c

B pT > 4.0 GeV/c

χ2
xy < 15.0

ct/σ(ct) > 4.0

|d0|< 50 µm

m(B) ∈ [5.2491,5.3092] GeV/c2

B±→ J/ψK± Mass Fit

The invariant mass distribution ofB+→ J/ψK+ includes many partially and misrecon-

structed physics decays in the region below 5.17 GeV/c2 [66]. The primary contribution

in this region is from the decayB+ → J/ψK∗0, when the pion fromK∗0→ Kπ has not

been found. Due to these misreconstructed decays, the left sideband can only reach down

to m(J/ψK+) = 5.17 GeV/c2. Additionally, the Cabibbo suppressed decayB+→ J/ψπ+

appears as a shoulder on the right side of theB+→ J/ψK+ peak, where it contributes to

both the signal and the right sideband. It corresponds to∼ 4% of theB+→ J/ψK+ sample,

as predicted from the ratio of branching ratios for these twodecay modes [1]2.

2The quoted branching ratiosBR(B+→ J/ψπ+) andBR(B+→ J/ψK+) in Ref. [1] are(4.0±0.5)×10−5

and(1.00±0.04)×10−3 respectively.
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The fit to the invariantB mass spectrum is a binned maximum likelihood fit. The

combinatorial background is modeled with a linear function, and the signal peak is modeled

with two Gaussian distributions, a narrow one for theB+ → J/ψK+ component and a

wide one for theB+→ J/ψπ+ component. TheB+→ J/ψπ+ component is offset from

B+ → J/ψK+ by a fixed amount, and its size is fixed to 4% of the area of both signal

Gaussians. The sum of these probability density functions (PDFs) is fit to data in the

region between 5.17 and 5.66 GeV/c2.

This fit is performed on both the low and high purityB+→ J/ψK+ samples shown in

Fig. 4.1. The results of these fits are given in Tab. 4.2. TheB mass window used in Tab. 4.1

corresponds to Mean(signal)±3σ(core) from Tab. 4.2. The sidebands to the left and right

of the signal are used as samples of combinatorial background as described in Sec. 6.1.3.

4.3.2 Reconstruction ofB±→ D̄0π±

TheB hadronic dataset is based on the two displaced tracks trigger (TTT) sample. The

sample used for this analysis was skimmed from the full compressed dataset by the INFN

b physics group [67]. This skim used version 5.3.1 of the CDF II software and calibration

pass 13, and used only theB CHARM trigger path (App. A). All tracks are required to be

defTracks with a minimumpT > 400 MeV/c. The decayD̄0→ K+π− is reconstructed

first. One of the tracks is required to be an SVT trigger track.There is no requirement on

the pT of each track, but the sumpT of the two tracks must be greater than 2.4 GeV/c. To

ensure the two tracks are from the same particle decay, the distance between them in thez
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Table 4.2: The results of theB+→ J/ψK+ invariant mass fits shown in
Fig. 4.1. The values for means andσ are all in units of GeV/c2.

Parameter Low purity sample High purity sample

Mean(signal) 5.2791±0.0003 5.2789±0.0004

σ(core) 0.0096±0.0012 0.008±0.001

Norm(core + tail) 61.9±1.4 18.5±0.6

σ(tail) 0.018±0.002 0.017±0.001

Mean(B+→ J/ψπ+) 5.33 (fixed) 5.33 (fixed)

Norm(B+→ J/ψπ+) 4% ofB+→ J/ψK+ 4% ofB+→ J/ψK+

σ(B+→ J/ψπ+) 0.08±0.06 0.10±0.08

Comb. bkg. constant 1530±130 442±70

Comb. bkg. slope −206±25 −60±13

Number ofB mesons 6108±139 1819±63
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plane must be less than 5 cm, the∆φ less than 1.5, and the∆R, where∆R2 = ∆φ2+∆η2, less

than 2. Before performing theVertexFit, the mass of the combined tracks is required to

lie between 1.71 and 2.02 GeV/c2. After theVertexFit, the mass must be between 1.81

and 1.92 GeV/c2 andpT(D̄0) > 2.4 GeV/c. Theχ2
xy of theVertexFit must be less than

50. There is no requirement on the impact parameters of the tracks, but the distanceLxy of

theD̄0 meson must be greater than−0.1 cm. When reconstructing the decayB+→ D̄0π+,

the invariant mass of theKπ is not constrained to the world averagēD0 value. Theπ+ is

also required to be an SVT trigger track, and the sum of its transverse momentum with that

of theD̄0 is required to be greater than 5.5 GeV/c. Between theπ+ and theD̄0 candidates,

the requirements are∆z< 5, ∆φ < 3, and∆R< 2. Before theVertexFit, the mass of the

B+ candidate must be between 4 and 6.5 GeV/c2. After theVertexFit, the mass must be

between 4.5 and 6 GeV/c2 andpT(B+) > 5 GeV/c. TheLxy of theB+ candidate must be

greater than−0.1 cm, and the impact parameter|d0(B+)|< 0.02 cm. Again, theχ2
xy of the

VertexFit must be less than 50.

Our reconstruction of the skimmed sample with the UniversalFinder replicates the pre-

vious selection criteria with slightly tighter criteria onsome candidates. Since this analysis

does not depend on knowing the trigger efficiency, we only perform minimal trigger con-

firmation. Using the SVT information for the tracks, the confirmation requirements on the

two triggering tracks are that they both havepT > 2.0 GeV/c and 120µm < |d0|< 1 mm.

TheK and firstπ candidates are required to have opposite charges and constrained to pass

through a common point usingVertexFit. At this level the mass of thēD0 candidate must

76



fall between 1.71 and 2.02 GeV/c2. The secondπ candidate must be consistent with the

D̄0 decay vertex. This time, theKπ invariant mass is constrained to the world averageD̄0

mass [1] before determination of theKππ decay vertex. The transverse momentum of the

combined system must satisfypT(Kππ) > 4.0 GeV/c, and the invariant mass of theKππ

triplet must lie between 4.7 and 6.0 GeV/c2.

Selection criteria for this decay channel were also optimized during the studies to de-

velop a method of determining the flavor ofB0 mesons at production [65]. A full optimiza-

tion based onS/
√

S+B was performed, and the final selection criteria are listed inTab. 4.3.

As for theB+ → J/ψK+ sample, we again use an isolation cut to select a high purityB

sample. The invariantB mass distributions for both the low and high purity samples are

shown in Fig. 4.2 with a mass fit (described below) superimposed.

B±→ D̄0π± Mass Fit

The mass spectrum for theB→ D̄0π decay has a much more complicated shape than

that for theB→ J/ψK decay. TheB→ D̄0π spectrum contains contributions from the sig-

nal, the combinatorial background, and various partially reconstructed or misreconstructed

B decays, some of which contribute under theB→ D̄0π mass peak.

As the selection criteria forB→ D̄0π is taken from the optimization of Ref. [65], the

mass template for fitting theB→ D̄0π mass spectrum is also taken from this analysis. The

template is documented in detail in Ref. [65], with the primary components of the fit listed

below:
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Table 4.3: Selection criteria for the decayB± → D̄0π± (D̄0→ K±π∓).
The symbolπB denotes the pion from theB+ decay. The symbolLxy(B→
D) denotes the distance theD meson traveled from theB decay vertex in
the tranverse plane.

Candidate Cut Value Units

D̄0 |m(D̄0)−1864|< 80 MeV/c2

χ2
xy < 15.0

πB pT > 1.0 GeV/c

∆R(D̄0,πB) < 2.0

B pT > 4.0 GeV/c

|d0|< 80 µm

χ2
xy < 15.0

Lxy/σ(Lxy) > 6.0

Lxy(B→ D) >−150 µm

m(B) ∈ [5.2417,5.315] GeV/c2
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• Single Gaussian for the decay signal peak.

• Single Gaussian for the Cabibbo suppressed decayB→ D̄0K.

• Two-horn structure for partially and misreconstructed decays of the formB→ DX.

• Decaying exponential for the combinatorial background.

Most of the parameters governing the partially and misreconstructed decays are fixed based

on the results of a genericb hadron Monte Carlo simulation. Only the relative normaliza-

tions and the relative fraction of events in the two-horn structure are allowed to float in

the fit. The slope of the exponential combinatorial background is fixed to its value at the

high end of the mass plot, where combinatorial background dominates. The Cabibbo sup-

pressed decayB+→ D̄0K+ appears as a shoulder on the right side of theB+→ D̄0π+ peak.

It corresponds to∼ 7% of theB+→ D̄0π+ sample, as predicted from the ratio of branching

ratios for these two decay modes [1]3. In this fit, the width of theB+ → D̄0K+ peak is

constrained to 39.63 MeV/c2, its normalization is given by the norm of theB+→ D̄0K+

peak multiplied by the ratio of branching ratios, and its mean is offset from the mean of the

B+→ D̄0K+ peak by 69.35 MeV/c2.

A binned maximum likelihood fit is performed to the low and high purity samples

shown in Fig. 4.2. The results of both fits are given in Tab. 4.4. TheB mass window shown

in Tab. 4.3 corresponds to Mean(signal)± 2σ(signal) from Tab. 4.4. Due to the many

3The quoted branching ratiosBR(B+→ D̄0K+) andBR(B+→ D̄0π+) in Ref. [1] are(3.7±0.6)×10−4

and(4.98±0.29)×10−3 respectively.
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partially reconstructed decays present in the left sideband, only the upper mass sideband

region is used as a sample of combinatorial background.

4.4 B∗∗ Monte Carlo Samples

Monte Carlo samples are used for two purposes in this analysis: to measure detector

resolution and create aB∗∗ signal template. The samples are described below.

To study detector resolution, we simulated a large sample ofB∗2 decays using the

BGenerator package to generate events and theQQModule package to decay events, all

in version 5.3.4 of the CDF II software. The mass of theB∗2 was set to 5.733 GeV/c2, and

theB∗2 decayed with equal probability toBπ andB∗π. TheB∗2 was also generated with zero

intrinsic width. The simulation reproduced theB+→ J/ψK+, J/ψ→ µ+µ− decay channel;

as this sample is only used to study detector effects it was not necessary to also generate a

sample decaying viaB+→ D̄0π+.

A B∗∗ sample with much smaller statistics was produced using thePYTHIA event gen-

erator. As with theBGenerator sample, thePYTHIA sample was produced only in the

B+→ J/ψK+ decay mode. The yield ofB mesons fromB∗∗ decay was set to 20% [17].

TheB∗∗ widths were set to 100 MeV/c2 for the broad states and 20 MeV/c2 for the narrow

states, but these widths were accidentally truncated at 50 and 5 MeV/c2 respectively. We

used the defaultPYTHIA branching ratio,

BR(B∗2→ Bπ)

BR(B∗2→ B∗π)
= 2.2
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Table 4.4: Results of theB± → D̄0π± invariant mass fits shown in
Fig. 4.2.

Fit parameter Low purity sample High purity sample

Norm (signal) 72±1.0 22.9±0.5

Mean (GeV/c2) 5.2783±0.0003 5.2781±0.0005

σ (GeV/c2) 0.0184±0.0003 0.0191±0.0004

Comb. bkg. constant 285±3 73±1

Comb. bkg. slope −0.98±0.11 −0.8±0.8

Two-horn structure

Norm 291±3 97±1

Frac in wide peak 0.678002 (fixed) 0.678002 (fixed)

Mean of wide peak 5.06227 (fixed) 5.06227 (fixed)

Offset of horns 0.0393004 (fixed) 0.0393004 (fixed)

Ratio of events in horns 0.45±0.01 0.409±0.002

σ of wide peak 0.0380609 (fixed) 0.0380609 (fixed)

σ of horns 0.0173066 (fixed) 0.0173066 (fixed)

All other misreconstructed decays

Norm 0.741±0.004 0.762±0.007

Slope 1.98502 (fixed) 1.98502 (fixed)

Constant 5.31605 (fixed) 5.31605 (fixed)

Endpoint 5.25059 (fixed) 5.25059 (fixed)

Number ofB mesons 6868±99 2186±55
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which is approximately twice the ratio predicted by theory (Sec. 2.4). Events were both

generated and decayed byPYTHIA. This sample was primarily used to fix a shape for the

B∗∗0s contribution in the fit to data. For this sample we also checked the agreement between

data and Monte Carlo, although such agreement is not important for estimating theB∗∗0s

shape. As evidenced by Fig. 4.3, which shows a comparison of theB pT spectrum between

theJ/ψK data and Monte Carlo, the agreement is quite good.

Table 4.5: B∗∗ andB∗∗s input parameters for thePYTHIA Monte Carlo
sample.

Name Mass (GeV/c2) Width (MeV/c2) Decay

B∗0 5.738 50 (Bπ)

B∗1 5.757 50 (B∗π)

B1 5.719 5 (B∗π)

B∗2 5.733 5 (Bπ,B∗π)

B∗s2 5.85 5 (BK,B∗K)
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Figure 4.1: Invariant mass of theµ+µ−K± candidates. The top plot
shows candidates from the selection criteria listed in Tab.4.1. The bot-
tom plot shows candidates after an additional isolation cut, used to create
a high-purityB∗∗ sample. The mass fit shown is described in Sec. 4.3.1
with fit results given in Tab. 4.2.
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Figure 4.2: Invariant mass of theKππ candidates. The top plot shows
candidates from the selection criteria listed in Tab. 4.3. The bottom plot
shows candidates after an additional isolation cut, used tocreate a high-
purity B∗∗ sample. The mass fit shown is described in Sec. 4.3.2 with fit
results given in Tab. 4.4.
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4.5 Σb Data Sample

TheΣb analysis is based on events collected by the CDF II detector from March 2002

to February 2006, for a total integrated luminosity of 1070±60 pb−1 of data. The CDF II

production version of this data is the 5.3 series, and the tracks are refit using version 6.3.4

of the CDF II software.

The Σb search is performed on a sample ofΛ0
b → Λ+

c π− events collected from the

compressedB hadronic two displaced tracks trigger dataset. This samplewas reconstructed

with loose selection criteria, and events which passed these preliminary selection cuts were

saved to a separate dataset and reconstructed later with more stringent requirements. For the

initial loose selection, the selection module looped over three tracks, assumed to be proton,

kaon, and pion candidates, to buildΛ+
c candidates. For this reconstruction, all tracks had to

pass thedefTracks requirements. To save computing time no track refitting was performed

during this stage. In addition to thedefTracks requirements, theΛ+
c candidate tracks must

all have at least 3 axial silicon hits in different layers of the SVX II andpT > 400 MeV/c.

The proton candidate was required to have transverse momentum greater than that of the

pion candidate track to suppress fakeΛ+
c combinations. The absolute value of the impact

parameter of each track was required to be less than 0.2 cm. The position of the primary

vertex was determined from the average beamline position atthe averagez0 of all three

tracks. The selection criteria are summarized in Tab. 4.6.

Thus selected, the three tracks were fit for a common vertex using VertexFit [63]. If

the fit converged, the following cuts were applied to theΛ+
c candidate:
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Table 4.6:Λ+
c → pK−π+ candidate selection criteria during the prelimi-

nary data reduction step.

Selection criteria forΛ+
c → pK−π+

defTracks collection

Number of siliconrφ hits≥ 3

|d0|< 0.2 cm

pT > 400 MeV/c

pT(p) > pT(π+)

zav = (z0(p)+z0(K−)+z0(π+))/3

• χ2
xy < 49

• Lxy > 0.02 cm

• pT(pKπ) > 4 GeV/c

• |m(pKπ)−m(Λ+
c )PDG|< 220 MeV/c2

If the above criteria were satisfied the program entered the loop over the fourth track. The

fourth track received a special treatment. First, we checked if this track is associated with

a muon. If the fourth track happened to be a muon, a muon mass hypothesis was assumed

for that track; otherwise, the pion mass was assumed. At thisstage, we required that 2 out

of the 4 tracks within a(pKπ)π candidate matched the online SVT trigger tracks. We also

confirmedB CHARM trigger cuts on online and offline measured track parameters. Namely:

• for each track:
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– χ2
SVT < 25

– pT > 2 GeV/c

– 0.0120< |d0|< 0.1 cm

• for the pair:

– opposite charged tracks

– |∆z0|< 5 cm

– 2◦ < |∆φ0|< 135◦

– pT1 + pT2 > 5 GeV/c

– Lxy > 0.02 cm

As a final step of the procedure, the four trackΛ0
b candidates were fit for a common

vertex, which required a 1-track vertex constraint betweenthe Λ+
c candidate andΛ0

b pion

candidate. The following cuts were required for the event tobe accepted:

• 3-dimensionalχ2 of 1-track vertex fit less than 30

• m(pKπµ) < 7.5 GeV/c2 (if fourth track is a muon)

• 4.8 < m(pKππ) < 7.0 GeV/c2 (if fourth track is not a muon)

• pT(pKπ+ track) > 5 GeV/c

• −0.007< ct(Λ+
c ← Λ0

b) < 0.028 cm (ct of theΛ+
c calculated from theΛ0

b vertex)
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• Lxy(Λ0
b) > 0.02 cm

All events which passed this reconstruction were saved to a skimmed sample and used

in the Σb analysis, where more stringent cuts are applied to reconstruct theΛ0
b candidate.

The Universal Finder reconstruction uses all available silicon hits, including the L00 lay-

ers. Instead of using the average beamline position to definethe primary vertex of the

interaction, we use a method of determining the primary vertex on an event-by-event ba-

sis [68]. This algorithm begins with the average beamline position, and then performs

a three-dimensionalCTVMFT fit to all good tracks to determine the exact location of the

primary vertex. We also use only runs which pass the good run criteria listed in App. B.2.

In reconstructing the decaysΛ0
b→ Λ+

c π− andΛ+
c → pK−π+, the proton from theΛ+

c

decay and theπ− from theΛ0
b decay are most likely to satisfy the displaced track trigger

requirements. Therefore, we require that both must havepT > 2 GeV/c, while theK−

andπ+ havepT > 0.5 GeV/c to ensure well-understood tracking efficiency. Once theΛ+
c

tracks are selected, aVertexFit is performed to constrain the tracks to a common vertex.

If this fit converges, the following cuts are applied to theΛ+
c candidate:

• χ2
xy < 30

• pT(pKπ) > 4.3 GeV/c

• 2.269< m(pKπ) < 2.301 GeV/c2

If the above criteria are satisified, the program enters a loop over the fourth track. This

track, assumed to be a pion candidate, must again passdefTracks requirements and have

89



pT > 2.0 GeV/c. AnotherVertexFit constrains this track along with the previouspKπ

candidate vertex to form theΛ0
b candidate vertex. For this fit, the mass of thepKπ candidate

is constrained to the world averageΛ+
c mass [1]. The requirements on theΛ0

b candidate are:

• χ2
xy < 30

• 4.8 < m(pKππ) < 7.0 GeV/c2

• pT(pKππ) > 6.0 GeV/c

• −0.007< ct(Λ+
c ← Λ0

b) < 0.028 cm

• ct(pKππ) > 0.025 cm

These are still not the final analysis cuts. Fortunately, thisΛ0
b sample has large statistics

and all selection cuts may be optimized using as a figure of merit S/
√

S+B, where both

the signal yieldS and the background yield in the signal regionB come from the fit of

an experimental data mass spectrum to a function developed in Ref. [69]. We also add a

standard cut on theΛ0
b VertexFit probability to be above 0.1%. The final cuts determined

by this optimization and applied in this analysis are listedin Tab. 4.7.

Λ0
b→ Λ+

c π− Mass Fit

The invariant mass distribution ofΛ+
c π− candidates is shown in Fig. 4.4 overlaid with

a binned maximum likelihood fit, with a clearΛ0
b→ Λ+

c π− signal at the expectedΛ0
b mass.

TheΛ0
b mass fit is described in detail in Ref. [70]. The primary components are:

90



Table 4.7: Selection criteria determined forΛ0
b reconstruction.

Variable Cut value

pT(π−b ) > 2 GeV/c

pT(p) > 2 GeV/c

pT(p) > pT(π+)

pT(K−) > 0.5 GeV/c

pT(π+) > 0.5 GeV/c

ct(Λ0
b) > 250µm

ct(Λ0
b)/σct > 10

∣

∣d0(Λ0
b)
∣

∣ < 80µm

ct(Λ+
c ← Λ0

b) >−70µm

ct(Λ+
c ← Λ0

b) < 200µm

|m(pK−π+)−m(Λ+
c )PDG| < 16 MeV/c2

pT(Λ0
b) > 6.0 GeV/c

pT(Λ+
c ) > 4.5 GeV/c

Prob(χ2
3D) of Λ0

b vertex fit > 0.1%
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Figure 4.4: Fit to the invariant mass spectrum of theΛ0
b candidates from

Ref. [70]. The black points are the data points while the solidblue line
is the total fit. The individual background components are listed in the
legend.

• TheΛ0
b→ Λ+

c π− signal.

• Fully reconstructedΛ0
b decays other thanΛ+

c π− (e.g.Λ0
b→ Λ+

c K−).

• Partially reconstructedΛ0
b decays. These are primarily semileptonicΛ0

b decays.

• Partially and fully reconstructedB mesons which pass theΛ+
c π− selection criteria.

• Combinatorial background.

The combinatorial background is modeled with an exponentially decreasing function. All

other components are represented in the fit by fixed shapes derived from genericb Monte

Carlo simulations. Within theΛ0
b baryon andB meson groups of shapes, the normal-
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izations are constrained by Gaussian terms to branching ratios that are either measured

(for B meson decays) or theoretical predictions (forΛ0
b decays). The branching ratios of

many yet-unobservedΛ0
b decay modes are extrapolated fromBR(Λ0

b→ Λ+
c π−) [71] and

BR(Λ0
b→ Λ∗+c π−) [72] using the ratios of branching ratios in analogousB̄0 decays [1];

factorization is assumed in two-bodyb→ c decays ofΛ0
b. In the fit, theΛ0

b components are

normalized relative to theΛ0
b→ Λ+

c π− signal. To normalize theB meson components, we

explicitly reconstruct aB̄0→ (K−π+π+)π− signal in theΛ+
c π− sample by replacing the

proton mass hypothesis with the pion mass hypothesis. As shown in Fig. 4.5, the resulting

yield is N(B̄0) = 774±72 (stat.) events. We scale this number by the ratio of allB decays

into four tracks observed in the Monte Carlo simulation to thesubset which results in a

(K−π+π+)π− signature; this ratio is found to be 1.75 [1]. The fit to the invariantΛ+
c π−

mass distribution results in 3125±62 (stat.)Λ0
b→ Λ+

c π− candidates. In theΛ0
b signal re-

gion of [5.565, 5.670] GeV/c2, there is a total of 3533Λ0
b candidates. Of these, 3180±180

(stat.) are fromΛ0
b decays, 260±20 (stat.) fromB meson decays, and 126±5 (stat.) from

Λ0
b combinatorial candidates.

4.6 Σb Monte Carlo Samples

Monte Carlo samples serve two purposes in theΣb analysis: to measure the detector

resolution for theΣb signal and to create templates forΣb background contributions. The
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Figure 4.5: The fit of the invariant mass ofB0→ K3π candidates. This
distribution is computed from theΛ+

c π mass distribution where the mass
of the proton candidate track, fromΛ+

c → pKπ, has been replaced by the
mass of a pion.

different samples and their uses are listed briefly below.

• VariousBGenerator B samples: These samples contain many differentB decays and

are reconstructed asΛ0
b to search for additional backgrounds in theΣb mass difference

distribution, as described in Sec. 6.1.3.

• Λ0
b→ Λ+

c π− sample: This sample was generated withPYTHIA forcing the decays

Λ0
b→ Λ+

c π− andΛ+
c → pK−π+, with some of theΛ0

b produced byΣb decay. This

particular sample only producesbb̄ pairs through flavor creation (Fig. 2.1). The

PYTHIA default pT spectrum ofb baryons was used for generation, so the sample

must be reweighted forΛ0
b pT as described in Ref. [73]. This sample is used to
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determine theΛ0
b hadronization component of theΣb background, also described in

Sec. 6.1.3.

• Σb→ Λ0
bπ signal sample: This sample was generated withPYTHIA forcing the decay

Σb→ Λ0
bπ with zero intrinsic width for theΣb states, and then forcing the decays

Λ0
b→ Λ+

c π− andΛ+
c → pK−π+. This sample also only producesbb̄ pairs through

flavor creation. ThepT spectrum ofb baryons in the generation was corrected in

accordance with Ref. [73]. This sample is used to measure detector resolution as

described in Sec. 6.1.5.

Λ0
b reconstruction of these Monte Carlo samples is performed with the Universal Finder

using the selection criteria listed in Tab. 4.7.

4.6.1 Data to Monte Carlo Comparisons

To estimate theΣb background from hadronization tracks around promptΛ0
b baryons

we use theΛ0
b→ Λ+

c π− PYTHIA sample, as explained in Sec. 6.1.3. For this purpose, the

Monte Carlo sample must accurately model data. We compare theagreement between the

data and the Monte Carlo sample for kinematic quantities of theΛ0
b candidate and the tracks

surrounding theΛ0
b. The Monte Carlo sample does not contain combinatorial background

or B meson contamination, while the data has both. We can subtract the combinatorial

background from the kinematic distributions in data by using the high massΛ0
b sideband

as a sample of pure combinatorial background. There is no simple way to remove theB

meson contribution, but as this contribution is small (< 10%) we do not correct for it.
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The PYTHIA default fragmentation andΛ0
b pT spectrum were used in the generation.

The defaultΛ0
b pT spectrum in Monte Carlo has more high momentumΛ0

b candidates

than seen in the data sample, so we must reweight the Monte Carlo to achieve the cor-

rect Λ0
b pT spectrum. To do this, we first normalize the Monte Carlo to the same number

of Λ0
b as in data. Then we plot the ratio of the dataΛ0

b pT histogram to the Monte Carlo

Λ0
b pT histogram and model this ratio by a linear function. The Monte Carlo sample is

reweighted according to the following procedure:

1. For each event, we find the value of the reweighting variable (in this case theΛ0
b pT).

2. The weight for this event is given by the value of the linearfunction at this value of

the reweighting variable.

3. When filling distributions, each event is weighted by the number calculated in (2).

We do not throw events away, but reweight all distributions with event-by-event weights.

The Λ0
b pT spectrum before and after reweighting are shown in Fig. 4.6.The linear fit

parameters are given in Tab. 4.8 (top).

The Monte Carlo does not reproduce the data well for the soft tracks around theΛ0
b

candidate, as shown in Fig. 4.7. Thus we must also reweight the Monte Carlo for the

track pT spectrum. Track reweighting is performed in the same way as for theΛ0
b pT, by

plotting the ratio of data to Monte Carlo in bins of trackpT. The fit parameters are given

in Tab. 4.8 (bottom). After applying this weight to the remaining track histograms, the

agreement between track quantities in data and Monte Carlo becomes quite good. Figs. 4.7
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through 4.13 show data to Monte Carlo comparisons for track quantities both before and

after reweighting for the trackpT. All distributions have been reweighted forΛ0
b pT as

well. The Monte Carlo has been normalized to have the same number of Λ0
b candidates

as found in data. The kinematic quantitiesprel
T and prel

L are, respectively, the tranverse

and longitudinal components of the track momentum relativeto theΛ0
b momentum vector.

After reweighting, the data to Monte Carlo ratio for theΛ0
b hadronizationQ distributions

(Figs. 4.12 and 4.13) are consistent with straight lines at+0.9 rather than+1. This is

consistent with aB meson contribution of about 10% in the data.

Table 4.8: Parameter values for the linear functions used toreweight the
Monte Carlo inΛ0

b pT (top) and trackpT (bottom).

Λ0
b pT Parameter Value Error

p0 1.30 0.06

p1 −0.025 0.004

Fit Prob. 38% –

Track pT Parameter Value Error

p0 1.73 0.06

p1 −0.353 0.040

Fit Prob. 92% –
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Figure 4.6: Data to Monte Carlo comparison ofΛ0
b pT before (left) and

after (right) reweighting forΛ0
b pT. The linear fit to the left plot is used

as the function to reweight the Monte Carlo. The right plot shows agree-
ment with a straight line at +1.
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Figure 4.7: Data to Monte Carlo comparison of trackpT before (left)
and after (right) reweighting for trackpT. The linear fit to the left plot is
used as the function to reweight the Monte Carlo. The right plot shows
agreement with a straight line at +1.
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Figure 4.8: Data to Monte Carlo comparison of trackprel
T before (left)

and after (right) reweighting for trackpT.
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Figure 4.9: Data to Monte Carlo comparison of trackprel
L before (left)

and after (right) reweighting for trackpT.
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Figure 4.10: Data to Monte Carlo comparison of∆φ between the track
andΛ0

b candidate before (left) and after (right) reweighting for track pT.
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Figure 4.11: Data to Monte Carlo comparison of∆η between the track
andΛ0

b candidate before (left) and after (right) reweighting for track pT.
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Figure 4.12: Data to Monte Carlo comparison of theΛ0
bπ− Q distribution

before (left) and after (right) reweighting for trackpT.
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Figure 4.13: Data to Monte Carlo comparison of theΛ0
bπ+ Q distribution

before (left) and after (right) reweighting for trackpT.
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Chapter 5

B∗∗0 Measurement

5.1 Analysis Methodology

TheB∗∗ analysis is based on events collected from March 2002 to August 2004, for a

total integrated luminosity of 370±20 pb−1 of data. TheB∗∗0 is reconstructed in twoB+

final states,B±→ J/ψK± andB±→ D̄0π±. The following sections describe theB∗∗ recon-

struction, determination of theB∗∗ backgrounds, fitting procedure for theB∗∗ candidates,

and results of this search.

5.1.1 B∗∗ Reconstruction

The B∗∗ candidate is reconstructed using tracks in the vicinity of the reconstructedB

meson. All tracks around theB which satisfy the selection criteria are used to reconstruct

oneB∗∗. The selection criteria on the extra track are almost identical for the two decay
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channels. There is one extra cut made on the tracks in theB→ D̄0π decay channel which

excludes tracks from misreconstructedD∗ decays, as explained in Sec. 5.1.2. The selection

criteria on the extra track in the event, shown in Tab. 5.1, are chosen to ensure that the track

is prompt and associated with theB meson. For the high purity sample, as explained in

Sec. 4.3.1, an isolation cut was applied to select events where only one track in the vicinity

of theB meson passes all the cuts in Tab. 5.1 including a lowerpT cut of 400 MeV/c.

Table 5.1:B∗∗ selection criteria for tracks in the vicinity of theB meson.
The final criteria is only for theB+→ D̄0π+ decay channel.

Candidate Cut Value Units

track |d0/σ(d0)|< 3.5

∆R(B, track) < 0.7

|∆z(B, track)|< 5.0 cm

pT > 0.7 GeV/c

Additional requirements forB+→ D̄0π+ channel

track m(D̄0track)−m(D̄0) < 0.142 GeV/c2

m(D̄0track)−m(D̄0) > 0.148 GeV/c2

TheB∗∗ mass is calculated from the reconstruction of the extra track with theB meson.

TheB is not mass constrained before adding the extra track. To minimize the contribution

of the mass resolution of eachB+ candidate, we construct the mass difference distribution

Q = m(Bπ)−m(B)−mπ, wherem(Bπ)≡m(B∗∗). All B∗∗ mass distributions are shown as

Q distributions. TheQ distributions are fitted in the regionQ∈ [0.0,2.0] GeV/c2 although
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the narrowB∗∗ signal is expected only in the regionQ∈ [0.2,0.4] GeV/c2.

5.1.2 B∗∗ Backgrounds

The combinatorial background in the signal region is estimated by defining sideband

regions around theB mass peak. Distributions for tracks are filled separately for B mesons

which fall in the mass sideband regions than forB mesons in the mass signal region. Those

distributions from tracks aroundB mesons in the mass sidebands are referred to as “side-

band” distributions, and represent pure combinatorial background. These sideband distri-

butions must be multiplied by an appropriate scale factor torepresent the combinatorial

background in the signal region. This scale factor is the ratio of combinatorial events in the

signal region to combinatorial events in the sideband regions, which is obtained from the

fit to the combinatorial background in theB mass fits described in Secs. 4.3.1 and 4.3.2.

The combinatorial background contributions are shown in the following sections.

Only the combinatorial background may be so easily separated. The remaining sources

of background are tracks from theB hadronization, underlying events, pile-up events, and

even the wideB∗∗ states. However, unlike the combinatorial background, these background

sources are all independent of theB decay mode. Thus, the shape of all these backgrounds

are constrained to be the same in both decay modes, as described in Sec. 5.1.4.
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B+→ J/ψK+ Combinatorial Background

For theB+ → J/ψK+ channel, the background is flat and the sidebands are easy to

model. The signal region is defined asm(J/ψK+) ∈ [5.2491,5.3092] GeV/c2, which

corresponds to Mean(signal)± 3σ(core) from Tab. 4.2. The low sideband is defined as

m(J/ψK+)∈ [5.17,5.21904] GeV/c2, where the high boundary is taken as Mean(signal)−

3σ(tail). The high sideband is defined asm(J/ψK+) ∈ [5.33941,5.66] GeV/c2, where the

lower edge is taken as Mean(B+→ J/ψπ+)+σ(B+→ J/ψπ+).

Binned minimumχ2 fits to the sideband distributions for the low and high puritysam-

ples are shown in Fig. 5.1. The low purity sample sideband is modeled by a wide Gaussian

plus a function of the form

F(Q;α,β) = Qα ·e−Q·β (5.1)

This parameterization was chosen because it describes wellthe overall shape of theQ

distribution, which is zero atQ = 0, rises quickly, and drops off exponentially. The high

purity sample is modeled by only Eq. (5.1), as there are too few events to discern any other

structure. Due to a lack of events in the bins near zero, and anupward fluctuation of events

around 0.3 GeV/c2, the high purity background events are not as well-modeled as the low

purity background events. An unbinned fit to the high purity events, shown in Fig. 5.17,

performs slightly better than the binned fit.
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B+→ D̄0π+ Combinatorial Background

Sidebands are more difficult to define for theB+→ D̄0π+ channel. Although the combi-

natorial background is modeled by a relatively simple exponential function, the area below

the signal peak in mass includes many partially and misreconstructedB decays. The re-

gion above the peak, however, is virtually pure combinatorial background. Therefore, we

use only the upper mass sideband to estimate the combinatorial background contribution.

The signal region is defined asm(D̄0π+) ∈ [5.2417,5.315] GeV/c2, which corresponds to

Mean(signal)±2σ(signal) from Tab. 4.4. The sideband region is defined asm(D̄0π+) ∈

[5.37029,6.0] GeV/c2, where the lower edge is taken as Mean(signal)+5σ(signal).

TheB+→ J/ψK+ combinatorial backgroundQ distribution is smooth, but the initial

B+→ D̄0π+ combinatorial backgroundQ distribution showed a small peak centered atQ∼

0.145 GeV/c2 with a width of∼ 20 MeV/c2, as shown in Fig. 5.2. Further investigation

revealed this peak is from decays ofB0→ D∗−π+, with D∗− → D̄0π−, where the pion

from D∗ decay is misreconstructed as the pion fromB∗∗ decay. This source of background

may be eliminated by imposing a cut on the mass difference between theD̄0 and the extra

track added to thēD0. This is the final criteria shown in Tab. 5.1. The resulting smooth

sideband distributions for both low and high purity samplesare shown in Fig. 5.3 with

binned minimumχ2 fits. The low purity sample sideband is modeled by a wide Gaussian

plus Eq. (5.1). The high purity sample is modeled only by Eq. (5.1), as there are too few

events to discern any other structure.
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Figure 5.1: Binned minimumχ2 fit to the histogram filled from tracks
in theB mass sidebands for theB+→ J/ψK+ channel. The top plot is
for the low purity sample while the bottom plot is for the highpurity
sample. This shape, multiplied by a normalization factor, comprises the
combinatorial background component of the totalB∗∗ fit.
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Figure 5.2: Binned minimumχ2 fit to the histogram filled from tracks
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Figure 5.3: Binned minimumχ2 fit to the histogram filled from tracks
in the B mass sidebands for theB+ → D̄0π+ channel. The top plot is
for the low purity sample while the bottom plot is for the highpurity
sample. This shape, multiplied by a normalization factor, comprises the
combinatorial background component of the totalB∗∗ fit.
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5.1.3 Mass Resolution of Highη Tracks

As observed in Sec. 4.3, this analysis uses inside-out standalone silicon-seeded tracks.

It has been observed that tracks in the forward regions, at high values ofη (|η|> 1.1), have

worse mass resolution than tracks in the central regions, atlow values ofη (|η|< 1.1). We

use thePYTHIA Monte Carlo sample described in Sec. 4.4 to study the effect ofhigh η

tracks on mass resolution in theB∗∗ mass difference measurement, and if mass resolution

could be improved by rejecting these tracks.

The effect of highη tracks on mass resolution may be seen in Fig. 5.4, which shows

theB mass in thePYTHIA Monte Carlo sample for kaons at|η|< 1.1 (left) versus kaons at

|η|> 1.1 (right). The width of theB peak is nearly doubled when using only highη tracks.

To find the impact on theB∗∗ mass difference measurement, we examine the detector res-

olution from theBGenerator Monte Carlo sample separately forB∗∗ pion candidates with

|η|< 1.1 and|η|> 1.1. The plots for theB∗2→Bπ detector resolution are shown in Fig. 5.5

and for theB∗2→ B∗π in Fig. 5.6. Tracks with|η|< 1.1 are fit with the four Gaussian reso-

lution model described in Sec. 5.1.4. There are very few tracks in the highη region which

satisfy theB∗∗ track selection cuts, so these distributions are modeled bya single Gaussian.

Fit parameters are shown in Tab. 5.2.

From the table it appears that for the few tracks at|η| > 1.1 the mass resolution is

worse than for tracks of|η|< 1.1. However, even the high|η| tracks fall within the second

Gaussian of the full sample, so removing those tracks is not expected to improve the mass

resolution. This expectation agrees with the fit parametersfor the tracks of lowη; those fit
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Table 5.2:B∗∗ mass resolution, taken from aBGenerator B∗∗0 Monte
Carlo sample, for high versus lowη tracks. The lowη track distribution
is modeled by four Gaussians (top). Due to low statistics, the high η
track distribution is modeled by a single Gaussian (bottom).

Parameter B∗2→ Bπ Detector Resolution B∗2→ B∗π Detector Resolution

Tracks with|η|< 1.1

Mean 0.012±0.02 −0.08±0.02

First Gauss. Const. 6030±160 7160±90

First Gauss.σ 2.80±0.05 3.11±0.03

Second Gauss. Const. 1160±160 610±90

Second Gauss.σ 5.4±0.2 6.4±0.3

Third Gauss. Const. 41±14 17±6

Third Gauss.σ 13±1 17±2

Fourth Gauss. Const. 1.6±0.3 1.2±0.3

Fourth Gauss.σ 210±240 540±710

Fit Probability 2.5% 99%

Tracks with|η|> 1.1

Mean 1.2±0.5 0.11±0.5

First Gauss. Const. 19±2 20±2

First Gauss.σ 6.3±0.4 5.4±0.3

Fit Probability 60% 29%
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parameters are identical within errors to the fit parametersin Tab. 5.3, which uses tracks at

all values ofη.

Because we measure theB∗∗ mass difference rather than theB∗∗ mass directly, the

worsening of mass resolution due to including highη tracks has a negligible impact on this

analysis. Thus, we use tracks at all values ofη.
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Figure 5.5: Detector resolution of theB∗2 → Bπ decays from a
BGenerator B∗∗0 Monte Carlo sample. The left plot shows the reso-
lution using only tracks at|η| < 1.1, while the right plot shows the res-
olution using only tracks of|η| > 1.1. The left plot is modeled by four
Gaussians while the right is modeled by a single Gaussian, with the fit
parameters shown in Tab. 5.2.
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Figure 5.6: Detector resolution of theB∗2 → B∗π decays from a
BGenerator B∗∗0 Monte Carlo sample. The left plot shows the reso-
lution using only tracks at|η| < 1.1, while the right plot shows the res-
olution using only tracks of|η| > 1.1. The left plot is modeled by four
Gaussians while the right is modeled by a single Gaussian, with the fit
parameters shown in Tab. 5.2.

Mass Resolution Smearing due to Lost Photon

Another possible effect on the mass resolution is the loss ofthe photon emitted when the

B∗ decays toBγ. This photon has very low energy (45.78±0.35 MeV/c2 [1]), but any miss-

ing energy in the reconstruction might cause a smearing of the reconstructedB∗∗ mass. To

check the magnitude of this effect, we again use theB∗∗0 signalBGenerator Monte Carlo

sample described in Sec. 4.4. We reconstruct allB∗2 which decay toB∗π in two ways, as the

mass of theBπγ and as the mass only of theBπ. To avoid detector resolution effects, we use

the simulation mass and momenta for each particle rather than the reconstructed mass and

momenta. We then plot the mass differencem(Bπγ)−m(Bπ), shown in Fig. 5.7, to esti-

mate the smearing caused by the photon. This histogram is centered on 46.13 MeV/c2, the

default value form(B∗)−m(B) in theBGenerator decay table, and the root mean square

(RMS) is 1.4 MeV/c2. The RMS value gives an estimate of the actual smearing of theB∗∗
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mass due to the loss of this photon; we see that it is expected to be around 1.4 MeV/c2. We

account for this smearing by using a separate detector resolution function forB∗∗ decays

throughB∗, as described in Sec. 5.1.4.
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Figure 5.7: Mass difference from reconstructing the decayB∗2→ B∗π
as Bπγ and also without the photon asBπ, in the BGenerator Monte
Carlo sample. The mean of the histogram is theBGenerator value for
m(B∗)−m(B), and the root mean square (RMS) is an indication of smear-
ing caused by the loss of the photon during reconstruction.

5.1.4 B∗∗ Fit Description

We use two finalB+ decay states to increase theB∗∗ statistics; however, we do not

simply add theB∗∗ mass distributions for the two channels for several reasons. The first is

the difference in background shapes; the combinatorial background for the two channels is

very different, both in shape and in the amount of such background present in each channel,
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as shown in Sec. 5.1.2. The large background in theJ/ψK channel would overwhelm the

signal in theD̄0π channel if the events were merely added. The second reason wedo not

add the events is the difference in theB+ pT spectrum between the two channels, as shown

in Fig. 4.3. At highpT, above about 10 GeV/c, thepT spectra for the two decay channels

agrees fairly well. Below 10 GeV/c, there is some discrepancybetween the two spectra,

which we attribute to the differing selection ofB events by the dimuon and displaced track

triggers. Due to this discrepancy, we also did not constrainthe number ofB∗∗ events in

each channel to the same relative normalization.

While we do not add the two channels together directly, we may effectively combine

them by fitting both simultaneously. The rest of this sectiondescribes an unbinned maxi-

mum likelihood fit for bothB+ samples simultaneously.

Detector Resolution

To determine theQ detector resolution, we look at the difference between the gener-

ated and reconstructedB∗2 mass in theBGenerator B∗∗0 Monte Carlo sample described in

Sec. 4.4. To account for the smearing of the lost photon inB∗ decays, the detector resolu-

tion is modeled separately forB∗2→ Bπ andB∗2→ B∗π decays, and the results are shown

in Fig. 5.8. We expect the distribution to be symmetric and centered at zero. The large

tails of the distribution require a fit of more than one Gaussian, and we use four Gaussians

constrained to have the same mean. The fit parameters are shown in Tab. 5.3. The mean

of the B detector resolution model is consistent with zero, but the mean forB∗ is offset
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Table 5.3: Fit parameters of theB∗2→ Bπ (left) andB∗2→ B∗π (right)
detector resolutions shown in Fig. 5.8 modeled by four Gaussians, with
the means of the four Gaussians constrained to be the same.

Parameter B∗2→ Bπ Detector Resolution B∗2→ B∗π Detector Resolution

Mean 0.014±0.02 −0.08±0.02

First Gauss. Const. 6000±160 7160±90

First Gauss.σ 2.79±0.05 3.11±0.03

Second Gauss. Const. 1200±160 630±81

Second Gauss.σ 5.4±0.2 6.4±0.3

Third Gauss. Const. 43±12 17±6

Third Gauss.σ 13±1 17±2

Fourth Gauss. Const. 1.6±0.2 1.2±0.3

Fourth Gauss.σ 200±90 500±2000

Fit Probability 11% 99%

from zero by 4σ. Other than the mean, the parameters for each Gaussian are consistent

betweenB andB∗ decays within errors, although theB∗ widths are always larger, by about

1 MeV/c2 for the two central Gaussians.

Compared to the predictedB∗∗ intrinsic width of 16 MeV/c2, the detector resolution

is a small effect. From Tab. 5.3, it is clear that the third andfourth Gaussians contribute

little to the overall detector resolution and have large associated uncertainties. These wider

Gaussians are based on tracks which are not well measured in the detector,e.g.have fewer
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COT or silicon hits. We expect the Monte Carlo will not accurately simulate hits on the

edge of detector acceptance; in fact, even for the well-measured tracks the Monte Carlo

may underestimate the detector resolution slightly. Therefore, we use only the two central

Gaussians as a model for the detector resolution. This double Gaussian resolution function

is convoluted with a Breit-Wigner distribution to describe each narrowB∗∗ signal peak.
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Figure 5.8: The difference between the generated and reconstructedB∗∗

mass, when theB∗∗ is generated with an intrinsic width of zero, gives the
detector resolution in that decay channel. Detector resolution is shown
here for the decaysB∗2→Bπ (left) andB∗2→B∗π (right) in aBGenerator
Monte Carlo simulation. The histograms are modeled by four Gaussian
distributions constrained to have the same mean, with the fitparameters
given in Tab. 5.3.

B∗∗ Fit Model

TheB∗∗ fit is performed using the RooFit infrastructure [74]. The RooFit library works

within the ROOT environment and provides fitting tools such as precompiled PDFs to

model distributions of events. A RooFit model may be used to perform likelihood orχ2 fits,

produce plots, and generate simplistic, or “Toy,” Monte Carlo samples for many different

studies. TheB∗∗ fit uses RooFit version 1.04.
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The expected signal structure for the narrowB∗∗ peaks was described in Sec. 2.4. We

fit for three peaks, theB∗2→ Bπ, B∗2→ B∗π, andB1→ B∗π. The latter two peaks are ex-

pected to overlap, given the theoretical mass difference betweenB1 andB∗2 and intrinsic

width of the states. The signal structure must be identical for bothB+ decay chains. Due

to the low statistics of our sample, we fix the intrinsic widthto the theoretical prediction

of 16 MeV/c2 [8] for both B1 andB∗2. We also found it necessary to constrain the normal-

ization of events in theB∗2→ B∗π peak relative to events in theB∗2→ Bπ peak. We use the

theoretical prediction,

BR(B∗2→ Bπ)

BR(B∗2→ B∗π)
= 1.1±0.3

described in Sec. 2.4. The wideB∗∗ states should also be present, but we do not expect to

separate them from the background.

In order to perform the simultaneous fit to the sideband andB∗∗ Q distributions of both

decay modes (a total of four histograms to fit simultaneously), we first perform a binned

minimum χ2 fit to the sideband distributions. This provides a good starting point for the

unbinned maximum likelihood fit. These sideband fits are shown in Figs. 5.1 and 5.3. As

previously observed, theB∗∗ signals and the non-combinatorial backgrounds are expected

to have the same shape for bothB+ decay modes. We use this knowledge to reduce the

number of floating parameters in the simultaneous fit, by creating only oneB∗∗ signal PDF

and one non-combinatorial background PDF. We fit these PDFs to both Q distributions

simultaneously. The overall PDF normalization for each channel is still allowed to float

separately. TheB∗∗0s contribution is also fixed in both shape and normalization from the
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PYTHIA Monte Carlo sample as described below, and is the same for bothdecay channels.

This contribution appears as a small, wide Gaussian to the left of theB∗∗ signal region.

TheB∗∗ signal PDF is the sum of PDFs for the three expected narrowB∗∗ peaks. Each

PDF consists of a Breit-Wigner convoluted with the double Gaussian detector resolution

model. The width of the Breit-Wigner represents the intrinsic width of theB∗∗ states and

is fixed to the theoretical value of 16 MeV/c2. The non-combinatorial background PDF

which is fit to both decay channels consists of the function inEq. (5.1), plus a wide Gaus-

sian distribution. The purpose of the added Gaussian is to absorb the wideB∗∗ states; the

Gaussian parameters are left floating in the fit but the numberof events is fixed to the same

number of events as in the narrowB∗∗ peaks. However, the wide Gaussian does not give

us any information about the wide states, as we do not know thecorrect shape for the

non-combinatorial backgrounds.

B∗∗0s Component

TheB∗∗0s decays toB+K−; when the kaon is misreconstructed as a pion, theB∗∗0s con-

tributes to theB∗∗ distribution. ThePYTHIA Monte Carlo sample described in Sec. 4.4 is

used to determine the shape of this contribution. At the timethis analysis was performed,

only theB∗0s2 state had been observed [16, 17]. Thus the Monte Carlo sample contains only

B∗s2→ B(∗)K decays, with theB∗0s2 intrinsic width set to 5 MeV/c2.

When the kaon is misreconstructed as a pion, theB∗s2 mass peak becomes considerably

smeared, stretching out to a width of∼50 MeV/c2. Therefore, theB∗s2 appears in theB∗∗
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distribution as a wide contribution betweenQ ∈ [0.0,0.2] GeV/c2. This is below our ex-

pectedB∗∗ signal region, but adds an extra component to the background. Due to the low

statistics in the sample, and the small number ofB∗∗s events expected in theB∗∗ sample, we

model this contribution with a simple Gaussian distribution rather than using a more com-

plicated shape to describe the smearing. TheB∗s2 signal should more correctly be modeled

by two distributions, one forB∗s2→ BK decays and another forB∗s2→ B∗K decays, with

the mean of theB∗K peak fixed relative to theBK peak. With the statistics in the current

sample, there is little practical difference between fitting theB∗∗s signal with a single Gaus-

sian or with a double Gaussian, as shown in Fig. 5.9. The double Gaussian shape, with the

parameter values given in Tab. 5.4, will be used to estimate the systematic uncertainty due

to theB∗∗s parameterization in Sec. 7.1. The single Gaussian is the default shape used in

the fit to data, and its parameter values are given in Tab. 5.5.

The Q distribution of allB∗∗0(s) signal in thePYTHIA Monte Carlo sample is shown in

Figure 5.10 with an unbinned maximum likelihood fit. TheB∗∗ intrinsic width, which is

only 5 MeV/c2 in this simulation, is constrained to be the same for all three peaks. The

B∗∗ wide states are modeled by a single wide Gaussian underneaththe narrow peaks, and

the B∗∗s states are modeled by a single wide Gaussian at lowQ values. The result of this

fit to all B∗∗(s) signal is given in Tab. 5.5. The fit values for the narrowB∗∗ states agree well

with the input generation values.
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Table 5.4: Parameter values from a double Gaussian fit to theB∗∗s PYTHIA

signal shown in Fig. 5.9. The parameters for the single Gaussian fit are
given in Tab. 5.5.

Parameter Fit value Units

B∗s2→ BK Qvalue 0.238±0.012 GeV/c2

B∗s2→ BK width 29±13 MeV/c2

B∗s2→ B∗K Q value 0.192 (fixed) GeV/c2

B∗s2→ B∗K width 72±6 MeV/c2

N(B∗∗s )/N(B) 0.0031±0.0002

Table 5.5: Parameter values for a fit to theB∗∗ andB∗∗s signal from a
PYTHIA Monte Carlo sample, with the input signal parameters given in
Tab. 4.5. TheQ values are the mass difference values,Q = m(Bπ)−
m(B)−mπ. The fit values of the broadB∗∗ andB∗∗s vary greatly from the
input values due to smearing during the reconstruction.

Parameter Fit value Input value Units

B1 Q value 0.2547±0.0003 0.2534 GeV/c2

B∗2 Q value 0.3148±0.0004 0.3134 GeV/c2

NarrowB∗∗ width 5.00±0.07 5 MeV/c2

BroadB∗∗ Q value 0.308±0.014 0.319 GeV/c2

BroadB∗∗ width 29.9±0.1 50 MeV/c2

B∗∗s Q value 0.200±0.003 0.391 GeV/c2

B∗∗s width 69±4 5 MeV/c2

N(B∗∗s )/N(B) 0.0020±0.0002
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Figure 5.9: TheQ distribution ofB∗0s2 states in aPYTHIA Monte Carlo
sample. On the left, the distribution is modeled by a single Gaussian,
while on the right the distribution is modeled by a double Gaussian with
the mean of theB∗s2→ B∗K Gaussian fixed relative to the mean of the
B∗s2→ BK Gaussian.
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Figure 5.10: TheQ distribution of allB∗∗0(s) states in thePYTHIA Monte
Carlo sample. TheB∗∗s appears as a broad state at lowQ values, drawn
here in magenta. The three narrow peaks modeled in blue are the two
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consists of the wideB∗∗ states.
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5.1.5 Tests of theB∗∗ Fit

To test the stability of our model we use Toy Monte Carlo samples produced within

the RooFit infrastructure. Toy Monte Carlo samples are generated through sampling of

the total fit PDF. They allows us to quickly generate similar but statistically independent

datasets and exercise our fit over these samples. Using over 9000 Toy MC samples, we

evaluate the “pull” of each floating parameter in our fit. The pull on a parameterα is

defined as

pull(α) =
αinital−αfinal

σα
(5.2)

whereαinital is the parameter value input to the Toy MC when sampling begins, andαfinal,

with errorσα, is the value after the fit is performed to the Toy MC sample. Asdefined in

Eq. (5.2), the pull for a stable parameter should have a unit Gaussian distribution centered

at zero. If there is any fit bias, the mean of the pull distribution will be offset from zero.

If the statistical errors on the parameter are being under- or over-estimated, theσ of the

pull distribution will be correspondingly greater or less than one. If the parameter causes

fit instabilities, the pull distribution will have large non-Gaussian tails.

The pulls for all floating fit parameters are shown in Figs. 5.11 and 5.12. Due to the

large number of floating parameters, some parameters do indeed show significant devia-

tions from the unit Gaussian. However, the purpose of this analysis is to measure theB∗∗

masses. Thus it is only important to measure any fit bias on theB1 andB∗2 masses. The pulls

for theB1 andB∗2 masses are shown separately in Fig. 5.12. For theB1, the mean value is

over 8 standard deviations away from zero and the width is 13 standard deviations below 1.
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For theB∗2 the mean value is almost 7 standard deviations from zero and the width is over

23 standard deviations above 1. To evaluate the actual fit bias, we plot the differences for

both theB1 andB∗2 masses; this is identical to the pull calculation except that the difference

is not divided by the error on the parameter. The difference distributions with a Gaussian

fit are given in Fig. 5.13. The mean of the Gaussians show the actual value of the fit bias

is only 0.22 MeV/c2 for B1 and−0.34 MeV/c2 for B∗2. These values are insignificant

compared to the statistical error we expect for this measurement, so we correct for the fit

bias by adding the appropriate amount to the measured valuesof the B1 andB∗2 masses.

We also take corrective factors on the statistical errors ofboth quantities (0.91 for theB1

mass and 1.22 for theB∗2 mass) to put the statistical error back in the one standard deviation

region. The pulls for both masses after these corrections are shown in Fig. 5.14, and these

corrections will be applied to the measured values in data.
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Figure 5.11: Toy Monte Carlo pulls for all floating parametersin theB∗∗

fit except theB1 andB∗2 masses, which are shown separately in Fig. 5.12.

125



B1meanPull
Entries  9494

Mean   -0.07798

RMS    0.9132

 / ndf 2χ  190.3 / 88

Gauss. const  4.169± 331.3 

Mean      0.009381± -0.07802 

Sigma     0.006641± 0.9134 

-4 -3 -2 -1 0 1 2 3 4
0

50

100

150

200

250

300

350

B1meanPull
Entries  9494

Mean   -0.07798

RMS    0.9132

 / ndf 2χ  190.3 / 88

Gauss. const  4.169± 331.3 

Mean      0.009381± -0.07802 

Sigma     0.006641± 0.9134 

 Q value1Pull of the B B2meanPull
Entries  9494
Mean   0.08771
RMS     1.208

 / ndf 2χ  272.1 / 97

Gauss. const  3.141±   246 
Mean      0.01264± 0.08874 

Sigma     0.009211± 1.215 

-4 -3 -2 -1 0 1 2 3 4
0

50

100

150

200

250

300

B2meanPull
Entries  9494
Mean   0.08771
RMS     1.208

 / ndf 2χ  272.1 / 97

Gauss. const  3.141±   246 
Mean      0.01264± 0.08874 

Sigma     0.009211± 1.215 

 Q value2Pull of the B*

Figure 5.12: Toy Monte Carlo pulls for theB1 mass (left) and theB∗2 mass
(right) fit parameters. The means and widths of both pull distributions
show significant deviations from zero and one respectively.
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Figure 5.13: Raw differences between the measured and true (from Toy
Monte Carlo) values for theB1 mass (left) and theB∗2 mass (right). The
means of the Gaussians measure the actual fit bias to be 0.22 and−0.34
MeV/c2 for B1 andB∗2 respectively.
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Figure 5.14: Toy Monte Carlo pulls for theB1 mass (left) and theB∗2
mass (right) after fit bias corrections. The means and widthsof the pull
distributions now agree with zero and one respectively.
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5.2 Result of theB∗∗ Fit to Data

The result of the simultaneous unbinned maximum likelihoodfit for the narrowB∗∗

states is given in Tab. 5.6 for both the low and high purityB samples. The result of the

unbinned fit to all four histograms is shown in Figs. 5.15 and 5.16 for the low purity sample,

and Figs. 5.17 and 5.18 for the high purity sample. In these plots, theχ2 value is calculated

between a binned histogram of the data and the value of the total PDF at the center of each

bin in a reduced range ofQ∈ [0.0,0.8] GeV/c2.

Table 5.6: Result of the simultaneous fit to the narrowB∗∗ states to both
the low purityB sample (left) and the high purityB sample (right). Un-
certainties are statistical only.

Parameter Low purity sample High purity sample

B1 Q value (GeV/c2) 0.261±0.002 0.269±0.003

B∗2 Q value (GeV/c2) 0.322±0.003 0.319±0.004

TotalB∗∗ events inB+→ J/ψK+ 193±42 80±18

TotalB∗∗ events inB+→ D̄0π+ 260±40 106±20

The results are consistent on both the low and high purity samples. For this measure-

ment, we quote only the mass difference values from the high purity sample. The fit bias

corrections are applied to the values from the high purity sample, and the final results are

shown in Tab. 5.7. These results are consistent within several standard deviations with

previous studies [18, 17]. The systematic error estimates are shown in Sec. 7.1.
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Table 5.7: Fit bias corrections for theB∗∗ Q values and their statistical
errors. Correction factors are determined in Sec. 5.1.5.

Parameter Value Corr. factor Corr. Value Units

B1 Q value 269 Add 0.22 269.22 MeV/c2

B1 stat. error 2.89 Mult. by 0.91 2.63 MeV/c2

B∗2 Q value 319 Add−0.34 318.66 MeV/c2

B∗2 stat. error 3.93 Mult. by 1.22 4.79 MeV/c2
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Figure 5.15: Result of the simultaneous unbinned likelihoodfit to the
sidebands ofB+→ J/ψK+ (left) andB+→ D̄0π+ (right) using the low
purity B sample. This represents theB∗∗ combinatorial background.
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Figure 5.16: Result of the simultaneous unbinned likelihoodfit to theB∗∗

Q distributions in theB+→ J/ψK+ (left) andB+→ D̄0π+ (right) decay
channels, using the low purityB sample.
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Figure 5.17: Result of the simultaneous unbinned likelihoodfit to the
sidebands ofB+→ J/ψK+ (left) andB+→ D̄0π+ (right) using the high
purity B sample. This represents theB∗∗ combinatorial background.
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Figure 5.18: Result of the simultaneous unbinned likelihoodfit to theB∗∗

Q distributions in theB+→ J/ψK+ (left) andB+→ D̄0π+ (right) decay
channels, using the high purityB sample.
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Figure 5.19: Simultaneous fit to theB∗∗ Q distribution in the high purity
B sample; this is the same fit as shown in Fig. 5.18, but with a smaller
range on thex-axis.
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Figure 5.20: Simultaneous fit to theB∗∗ Q distribution in the high purity
sample; this is the same fit as shown in Fig. 5.18, but with a smaller range
on thex-axis and 20 MeV/c2 bins.
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5.2.1 AlternativeB∗∗ Signal Fits

The combinatorial background was separated for the twoB+ decay channels in order

to better constrain the total background; for a similar reason, the non-combinatorial back-

grounds were constrained to have the same shape betweenB+ decay modes. The three

peak shape of theB∗∗ signal structure is based on theoretical predictions of thetwo narrow

B∗∗ states. These constraints add complication to the fit, but they also better describe the

data, as shown below.

No Background Separation

The fit was originally performed without separating combinatorial background from all

other backgrounds. In this case, we use separate backgroundmodels for eachB+ decay

mode. There is also no need to fit the sideband distributions,so the number of histograms

in the simultaneous fit is reduced from four to two. A simultaneous unbinned likelihood

fit of this form to theQ distributions is shown in Figs. 5.21 and 5.22, with the resulting fit

parameters given in Tab. 5.8.

The two fits, with and without sideband constraints as shown in Tabs. 5.6 and 5.8 re-

spectively, are consistent with each other. For the high purity sample, there is little differ-

ence between the fits with and without sideband constraints in terms of theB∗∗ fit param-

eters. Without constraints, the background does fluctuate more and causes the overall fit

probability to be lower for the fits in Fig. 5.22 compared to Fig. 5.18.

For the low purityB meson sample, background separation makes a greater difference,
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Table 5.8: Result of the fits to the narrowB∗∗ states to the low purity
(left) and high purity (right)B samples without separating combinatorial
background from the other background sources.

Parameter Low purity sample High purity sample

B1 Q value (GeV/c2) 0.261±0.002 0.270±0.003

B∗2 Q value (GeV/c2) 0.322±0.003 0.319±0.004

TotalB∗∗ events inB+→ J/ψK+ 225±43 75±19

TotalB∗∗ events inB+→ D̄0π+ 236±44 95±20

particular in the number ofB∗∗ events. The background rises almost directly underneath

the narrowB∗∗ signal; without any constraints, the location of the background maximum

fluctuates, and changes the number of events in the narrowB∗∗ peaks. InB+→ J/ψK+,

this shift in the background shape increases the number ofB∗∗ events by nearly 17%, while

in B+→ D̄0π+ the number ofB∗∗ events decreases by nearly 10%. Although this is within

the limits of the statistical error, it would cause a large uncertainty on aB∗∗ yield mea-

surement, which we hope to make in the next version of this analysis. Thus, although

the combinatorial background separation does not improve the mass measurement, it may

improve the measurement of the yields at a later date. For this reason we chose to fit the

sidebands for combinatorial background in the final fit on both samples.
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Figure 5.21: Result of a simultaneous unbinned likelihood fitto the low
purity B sample where the two channels are fit with the same signal func-
tion but separate background functions. The combinatorialbackground
has not been separated from the remaining backgrounds. Parameters for
this fit are shown in Tab. 5.8.

)2)    (GeV/cπ) - m(B) - m(πQ = m(B
0.0 0.5 1.0 1.5 2.0

 )2
E

ve
n

ts
 / 

( 
0.

01
 G

eV
/c

0

5

10

15

20

25

30

35

40

45

)2)    (GeV/cπ) - m(B) - m(πQ = m(B
0.0 0.5 1.0 1.5 2.0

 )2
E

ve
n

ts
 / 

( 
0.

01
 G

eV
/c

0

5

10

15

20

25

30

35

40

45
 decays+ Kψ J/→ + mass in B**B -1

CDF Preliminary: ~374 pb

Total Fit
Background

π* B→ 1B
π* B→ 2

*B
π B→ 2

*B

 = 38.5/54 = 0.712χ
Fit Prob = 95%

)2)    (GeV/cπ) - m(B) - m(πQ = m(B
0.0 0.5 1.0 1.5 2.0

 )2
E

ve
n

ts
 / 

( 
0.

01
 G

eV
/c

0

5

10

15

20

25

30

35

40

45

)2)    (GeV/cπ) - m(B) - m(πQ = m(B
0.0 0.5 1.0 1.5 2.0

 )2
E

ve
n

ts
 / 

( 
0.

01
 G

eV
/c

0

5

10

15

20

25

30

35

40

45

 decays+π 0 D→ + mass in B**B -1
CDF Preliminary: ~374 pb

Total Fit
Background

π* B→ 1B
π* B→ 2

*B
π B→ 2

*B

 = 43.7977/50 = 0.882χ
Fit Prob = 72%

Figure 5.22: Result of a simultaneous unbinned likelihood fitto the high
purity B sample where the two channels are fit with the same signal func-
tion but separate background functions. The combinatorialbackground
has not been separated from the remaining backgrounds. Parameters for
this fit are shown in Tab. 5.8.

Single Peak Structure

TheQ distributions, particularly for theB+→ D̄0π+ channel, show theB1 signal peak

to be much more pronounced than theB∗2 signal peak. Thus, we also try fitting the high

purity B sampleQ distributions with only aB1 signal PDF, with the signal function still

constrained to have the same shape for both decay modes. A binned likelihood fit without

separating the combinatorial background in each channel isshown in Fig. 5.23. The fit

probability for this fit is slightly lower than that of the default fit with three signal peaks.
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Figure 5.23: Result of a simultaneous binned likelihood fit tothe high pu-
rity B sample with only aB1 signal PDF. The combinatorial background
has not been separated for this fit. The fit probability is slightly lower
than for the defaultB1 andB∗2 signal PDF fit.

No B∗∗ Signal

To estimate the significance of theB∗∗ signal, we also fit the mass difference distribu-

tions with only a background function and noB∗∗ or B∗∗s signal functions. The result of a

binned likelihood fit to the high purityB sample is shown in Fig. 5.24. The fit probability

for this fit is much worse than that of the default fit with threesignal peaks.
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Figure 5.24: Result of a simultaneous binned likelihood fit tothe high
purity B∗∗ sample with only the background PDF and no signal PDFs.
The combinatorial background has not been separated for this fit. The fit
probability is much worse than for the defaultB1 andB∗2 signal PDF fit.
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5.2.2 Wrong SignB∗∗ Fits

TheQ distributions shown previously only use tracks with the correct charge correlation

wtih theB meson to come fromB∗∗ decay,i.e. B±π∓. When tracks of the wrong charge

correlation,B±π±, pass all otherB∗∗ selection criteria, these tracks fill the “wrong sign”Q

distribution. There should be no evidence ofB∗∗ signal in the wrong sign distributions.

Using a binned likelihood fit, the wrong sign distribution isfit with the defaultB∗∗

signal function. The combinatorial background is not separated for the two channels. The

fits to the high purity wrong sign distributions may be seen inFig. 5.25; the number ofB∗∗

events is consistent with zero for both channels.
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Figure 5.25: Result of a simultaneous binned maximum likelihood B∗∗

fit to Q distributions where theB meson and theB∗∗ track have the wrong
sign correlation,B±π±. This distribution is made for the high purityB
samples. The number ofB∗∗ in each mode is consistent with zero.

5.2.3 Three BodyB∗∗ Decays

Theoretically, it is also possible for theB∗∗ to decay to aB meson and two pions. Using

B+ decay channels, we cannot reconstruct a three body decay ofB∗∗0, as one of the pions

would be neutral and go undetected. However, theB∗∗± has the same spectrum as theB∗∗0,
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and we may detect the decaysB∗∗±→ B±π∓π±.

Using the low purity sample ofB mesons, we reconstructB∗∗± from theB+ and two

tracks in the cone around theB+. Both tracks must pass all the track criteria listed in

Tab. 5.1. TheQ distribution is calculated in a similar manner as the two body decays,

Q = m(Bππ)−m(B)−mπ. Thus for three body decays theQ distribution begins after the

charged pion mass.

We model the three bodyQ distribution with a simultaneous binned maximum likeli-

hood fit of the sameB∗∗ signal and background functions used in the fit on the two bodyQ

distribution. TheB mass sidebands are not used to separate the combinatorial background.

The resulting plots are shown in Fig. 5.26. There is no evidence of any peaks in theB∗∗

signal region, and the number ofB∗∗ events is consistent with zero for both channels.
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Figure 5.26: Result of a simultaneous binned likelihood fit tothe recon-
struction of a three bodyB∗∗ decay, withQ defined asQ = m(Bππ)−
m(B)−mπ. The combinatorial background has not been separated for
this fit. The number ofB∗∗ in each mode is consistent with zero.
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Chapter 6

Σ(∗)±
b Measurement

6.1 Analysis Methodology

After completing theB∗∗0 search, we used similar techniques in a search for the pre-

viously unobservedΣ(∗)±
b baryons. TheΣb measurement is based on events collected by

the CDF II detector from February 2002 through March 2006, with an integrated luminos-

ity of L = 1070±60 pb−1. We first reconstruct theΛ0
b in the decay modeΛ+

c π−, where

Λ+
c → pK−π+, using the Universal Finder described in Sec. 4.1.4. The following sections

describe theΣ(∗)
b reconstruction, determination of theΣ(∗)

b backgrounds, fitting procedure

for theΣ(∗)
b candidates, and results of this search.
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6.1.1 Σb Reconstruction

For theΣb analysis, we use only events in theΛ0
b mass signal region of [5.565, 5.670]

GeV/c2. We then find a track originating from the region near the primary vertex, as

depicted in Fig. 6.1. Unlike theB∗∗ search, we perform anotherVertexFit to constrain

this track to a common vertex with theΛ0
b candidate. Requiring a qualityΣb vertex fit, with

Prob(χ2
3D) > 0.1%, is expected to improve the mass resolution of theΣb candidates. For this

fit, the mass of thepKπ is again constrained to theΛ+
c mass although the combined(pKπ)π

mass is not constrained to theΛ0
b mass. We then form theQ = m(Λ0

bπ)−m(Λ0
b)−mπ

distribution, wherem(Λ0
bπ) ≡m(Σb). Initially, the only requirements on the pion fromΣb

decay, denoted byπΣb, are thedefTracks criteria.

Fig. 6.2 shows the resultingQ distributions forΛ0
bπ− and Λ0

bπ+ with the Σb search

region, 0.03< Q < 0.1 GeV/c2, removed. TheΣb search region is determined from theo-

retical predictions, and has been removed to prevent a biased selection criteria. To reduce

backgrounds in theQ distributions, we search for a set of additional cuts optimized forπΣb.

6.1.2 Optimization of Σb Selection Criteria

The Σb optimization was completed using∼ 922 pb−1 of data, before the last 150

pb−1 of data from February 2006 were added. The data sample used for optimization

applied all theΛ0
b selection criteria outlined in Sec. 4.5 except for the good run criteria. We

expect these two differences to have no impact on the optimization; as described below, the

optimized cuts turn out to be quite stable.

138



P.V.

c

b

Λ

p

π+

K

Λb

π
b

π

Σ

-

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

Figure 6.1: Sketch of the event topology of aΣb produced in the CDF
II detector. The tracks from the primary vertex are from theb quark
hadronization and the hadronization of thepp̄ debris.

We use the “Σb sidebands” outside of theΣb signal region to represent theΣb back-

ground. These sidebands are defined as:

• Lower Σb sideband: 0< Q < 30 MeV/c2

• UpperΣb sideband: 100< Q < 500 MeV/c2

The signal for the optimization is taken from theΣb PYTHIA sample described in Sec. 4.6.

To enhance theΣb signal with respect to the background, we vary the minimumpT
(

Σb
)

re-

quirement, as well as maximum|d0/σd0| and minimum cosθ∗ of πΣb candidate tracks. The

angleθ∗ is defined between the direction of theπΣb in theΣb rest frame and the direction

of theΣb in the laboratory frame.

We do not impose anypT cut on theπΣb candidate tracks, since, prior to optimization,

about half of theΣb events in our Monte Carlo sample lie below the standard minimum
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value of 400 MeV/c2, as shown in Fig. 6.3. In addition, we want to keep theQ distribution

in the signal region as level as possible to reduce systematic uncertainties on the shape of

the background in the signal region. A cut onpT(πΣb) would remove most of the candi-

dates in the lower sideband region of theQ distribution. Instead we use cosθ∗, which is

orthogonal toQ by definition but partially correlated withpT(πΣb). Increasing the minimal

value of cosθ∗ of πΣb candidates significantly reduces the overall background level rather

than depleting only the lower sideband. One possible bias inthe optimization is that the

Monte Carlo assumes a flat distribution in cosθ∗ for true Σb events. This is valid only if

theΣb baryons are unpolarized. The polarization ofΣb baryons produced inpp̄ collisions

is unknown at this time, and will be the subject of futureΣb measurements.

As shown in Fig. 6.1, a trueπΣb originates from the primary vertex. By requiring

a promptπΣb candidate, we reject poorly measured tracks and hadrons from the otherb

quark in the event, as well as tracks from spallation and other detector-related processes.

Placing an upper limit on|d0/σd0| of πΣb suppresses these non-prompt components.

For a successful optimization, the sample ofΣb signal events must be as close to real

Σb events as possible. For this reason we apply two correctionsto the PYTHIA Monte

Carlo Σb signal sample: one for the|d0/σd0| of the πΣb candidate, and one for theΣb

pT distribution. We first compare the distributions of|d0/σd0| for the upperΣb sideband

region in data and Monte Carlo (Fig. 6.4) to check that the Monte Carlo correctly models

the|d0/σd0| distribution of candidate tracks. For each distribution, we fit the core Gaussian

with its mean fixed to zero, and obtainσ of 1.12±0.03 and 1.18±0.03 in data and Monte
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Carlo, respectively. While the values are statistically compatible, we scale the Monte Carlo

|d0/σd0| distribution down by 5% to account for a possible true discrepancy. As a second

correction to thePYTHIA Monte Carlo sample, we also reweight thepT
(

Σb
)

spectrum

from PYTHIA using the same functional form used to reweight thepT(Λ0
b) spectrum, as

described in Sec. 4.6.1. ThepT
(

Σb
)

spectrum is not known, so this reweighting is only

an assumption made beforeΣb states are observed and their spectra measured explicitly.

These two corrections to thePYTHIA sample, the|d0/σd0| and pT
(

Σb
)

reweighting, are

both applied before performing theΣb optimization.

In the optimization, we useε(Σb)/
√

B as the score function, whereε(Σb) is the effi-

ciency to reconstruct candidates from thePYTHIA Σb Monte Carlo sample, andB is the

total number of background events that pass the cuts. For theoptimization we do not di-

vide the events intoΛ0
bπ− andΛ0

bπ+ categories but keep all events together. We perform

a simultaneous optimization of all three cuts
(

pT
(

Σb
)

, |d0/σd0|, and cosθ∗
)

using an iter-

ative one-dimensional gradient algorithm with fixed step sizes. ThepT
(

Σb
)

is optimized

first while the other two variables are kept fixed; once the maximum of the score function

is found, then|d0/σd0| is optimized while the other two are kept fixed, and so on, until

the score function is at the maximum with respect to all threecuts simultaneously. The

algorithm uses discrete step sizes, so the optimal values ofthe cuts are rounded to the near-

est step size. The step sizes are much smaller than the width of the maxima of the score

function, and are listed in Tab. 6.1.

During this process, the ratio of the number of background events in theΣb search
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window given the number of observed events in theΣb sidebands is fixed. This ratio is

a function of the shape of the background: the background distribution is modeled by

a function of the form Eq. (6.1), which is then integrated inside and outside the search

window. Since the cuts on bothpT
(

Σb
)

and cosθ∗ affect the shape of theQ distribution

of the background events, assuming this functional form is frozen is an approximation.

However, the shape of the background may be fixed from a previous optimization; we thus

perform several optimizations in a row until both the cuts and the background shape are

stable. In the final optimization, the ratio of the expected number of background events in

the search window and the number of events observed in theQ sidebands is∼ 0.21.

Table 6.1: Selection criteria for theΣb reconstruction, and the step sizes
used by the optimization algorithm.

Variable Cut value Step size

pT
(

Σb
)

> 9.5 GeV/c 0.5 GeV/c

|d0/σd0| < 3.0 0.25

cosθ∗ >−0.35 0.05

The result of the optimization is shown in Tab. 6.1. The “N− 1” scans are given in

Figs. 6.5, 6.6, and 6.7 for the final optimization scan. We findthat cosθ∗ is the only variable

which has non-negligible power to separate the signal from background. All maxima of

the score function are broad, indicating that the optimization result is fairly stable, since

a slightly different choice of cuts would yield a very similar signal significance. TheQ

distributions after applying the optimized cuts are shown in Fig. 6.8.
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Figure 6.2: Λ0
bπ− (top) andΛ0

bπ+ (bottom) Q distributions before ap-
plying optimizedΣb cuts. For the distributions after optimized cuts are
applied, see Fig. 6.8.
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Figure 6.4: Distribution of|d0/σd0| for πΣb candidates from the upperΣb

sideband (100< Q< 500 MeV/c2) in data (top) and aΣb PYTHIA Monte
Carlo (bottom). The sidebands in theΣb PYTHIA Monte Carlo are popu-
lated byΛ0

b hadronization tracks; theseπΣb candidates are prompt tracks,
which is all that matters since we only compare the width of Gaussians
centered at zero.
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Figure 6.5: The “N−1” scan of the cut onpT
(

Σb
)

. Top: ε(Σb)/
√
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)

(blue circles, left scale) andε(Σb) as a function of
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(blue histogram, right scale). We cut atpT

(
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)

> 9.5 GeV/c.
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Figure 6.7: The “N−1” scan of the cut on cosθ∗ of theπΣb candidates.
Top: ε(Σb)/

√
B as a function of cosθ∗ (blue circles, left scale) andε(Σb)

as a function of cosθ∗ (green triangles, right scale). Bottom: distribu-
tion of cosθ∗ for Σb signal (red histogram, left scale) and background
in theQ sidebands (blue histogram, right scale). The cosθ∗ distribution
for Σb signal is not flat due to the low reconstruction efficiency forlow
momentum tracks, which are primarily found at negative cosθ∗. We cut
at cosθ∗ >−0.35.
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6.1.3 Σb Backgrounds

The three main sources of backgrounds to theΣb search are described in the following

sections. To check for other significant sources of background, such as from 5-trackB

decays where one track is taken as theπΣb candidate, we reconstructed several large generic

B+/B0 Monte Carlo samples, described in Sec. 4.6, asΣb candidates. The three availableB

decay modes are shown in Tab. 6.2, with the number of generated events and the number of

Σb candidates passing the optimized analysis cuts in theΛ0
bπ− andΛ0

bπ+ subsamples. The

number of candidates shown is for the entire rangeQ ∈ [0.0, 0.5] GeV/c2, and is counted

after normalizing the samples to 1.1 fb−1 of data, the same amount used in theΣb analysis.

Fig. 6.9 shows theQ distributions of the most significant background, which hasonly 16

events forΛ0
bπ− andΛ0

bπ+ combined after normalization. TheQ distributions indicate that

these backgrounds are a negligible contribution to theΣb search.

Table 6.2: Summary of the generic Monte Carlo samples considered in
these background studies. The number of candidates meetingall Σb se-
lection criteria are counted after normalizing the samplesto the same
luminosity as data, 1.1 fb−1.

Sample Total events generatedΛ0
bπ− candidates Λ0

bπ+ candidates

B0→ D0πX 1.5 billion 0 1

B0→ D−πX 4.5 billion 4 12

B+→ D+πX 4.5 billion 0 0
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Figure 6.9: TheΛ0
bπ− (left) and Λ0

bπ+ (right) Q distributions for the
B0→ D−πX sample after applying allΣb selection cuts and normalizing
the sample to a luminosity of 1.1 fb−1. There is very little background in
theΣb Q distribution due to these modes.

Combinatorial Background

The combinatorial background is taken from the high mass sideband of theΛ0
b invari-

ant mass distribution, m(Λ0
b) ∈ [5.8, 7.0] GeV/c2. The low mass sideband also contains

misreconstructedB decays, a background source which will be discussed separately, so we

use only the high mass sideband as a sample of pure combinatorial background. Since we

use tracks from the sideband region to model tracks in the signal region, we need a scale

factor to properly normalize the track distributions from the sideband region to those for the

signal region. This scale factor is the ratio of the area under the combinatorial background

function in theΛ0
b mass fit for the signal region, m(Λ0

b) ∈ [5.565, 5.670] GeV/c2, to the

area under the sideband region. This results in a scale factor of 0.161±0.084.

TheΣb backgrounds are modeled by a function of the form

f (Q;α,Qmax,γ) =

(

Q
Qmax

)α
e−

α
γ (( Q

Qmax)
γ−1) (6.1)
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Eq. (6.1) is a modified version of the function in Eq. (5.1) used to describe the backgrounds

in Q spectra ofB∗∗0 decays. In this parameterization,Qmax is the value ofQ for which

f (Q;α,Qmax,γ) has a maximum for anyα andγ; the variablesα andγ regulate the shape

of the function from zero toQmax and aboveQmax respectively. Eq. (6.1) is not normalized

to one – when building the PDF based on it, RooFit will do this automatically – however,

it has the useful property thatf (Qmax)≡ 1 for anyα andγ.

We perform a binnned likelihood fit of Eq. (6.1) to theΛ0
bπ− andΛ0

bπ+ combinatorial

background distributions as shown in Fig. 6.10. The values of the parameters are given in

Tab. 6.3. Due to the low statistics in the highΛ0
b mass sideband, there are large fluctuations

in the data and the fit parameters have large statistical uncertainties. The number of events

is then multiplied by the scale factor of 0.161±0.084 to give the correct normalization of

the combinatorial background. Both the shape and the normalization of the combinatorial

background are fixed in the fit to data.
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Figure 6.10: Fits to theΣb combinatorial background distributions,
which are taken from theΛ0

b mass sideband region. Left:Λ0
bπ−, right:

Λ0
bπ+. The parameter values are given in Tab. 6.3.
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Table 6.3: Parameter values for the shape and normalizationof the com-
binatorial background in bothΛ0

bπ− (left) andΛ0
bπ+ (right).

Parameter Λ0
bπ− Λ0

bπ+

α 0.5±0.9 1.7±2.9

Qmax (GeV/c2) 0.15±0.10 0.12±0.06

γ 1.3±2.6 0.3±1.3

Events 538±33 528±32

Scaled Events 87±45 85±44

Fit Probability 3% 95%

Physics Background

The “physics background” is primarily composed of realB0 mesons misreconstructed

asΛ0
b baryons. This includesB0 mesons fromB∗∗± decay. Due to the mixing ofB0 andB̄0

mesons, this background will be present in both theΛ0
bπ− and theΛ0

bπ+ distributions.

To measure this background, we first reconstruct the decays of B̄0→ D+π−, where

D+→ π+K−π+, in a B0 data sample. By replacing one pion mass with the proton mass,

we reconstruct theD+ asΛ+
c and theB̄0 asΛ0

b. All kinematic criteria from theΛ0
b analysis

are then applied: we require the samepT cuts, but do not make the mass cuts. We combine

these candidates with a track from the primary vertex to forma Σb Q distribution.

In a largeB0 PYTHIA Monte Carlo sample with aB∗∗ yield of 20%,B∗∗± appear in the

Σb Q distribution as two peaks atQ ∼ 0.29 andQ ∼ 0.31 GeV/c2, far outside of theΣb

signal region. When normalized to a luminoisity of 1.1 fb−1, the number ofB∗∗ passing
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the Λ0
b kinematic cuts is quite small, and thus theB∗∗ peaks in the background are not

readily visible. Consequently, we treat the physics backgrounds, including theB∗∗ peaks,

as smooth.

We take the shape of theB0 backgrounds from theB0 data sample, but we must scale

the backgrounds to the number ofB mesons expected in theΛ0
b sample. The scale factor

is taken as the ratio of the number ofB0 events in theΛ0
b mass signal region to the number

of B0 events in the reconstructedB0 sample. The number ofB0 in theΛ0
b signal region is

calculated as part of theΛ0
b invariant mass fit described in Sec. 4.5 and is about 260±20

(stat.) events. We analyzed only the first∼ 700 pb−1 of B0 data and found 4570± 80

(stat.) B0 events which passed the kinematicΛ0
b selection, resulting in a scale factor of

0.056±0.032. The physics background is modeled by a binned likelihood fit of Eq. (6.1)

for both Λ0
bπ− andΛ0

bπ+. The results are shown in Fig. 6.11, with the parameter values

given in Tab. 6.4. Both the shape and normalization of the physics background are fixed in

the fit to data.
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Figure 6.11: Fits to theΣb physics background distributions fromB0

data. Left: Λ0
bπ−, right: Λ0

bπ+. The parameter values are given in
Tab. 6.4.
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Table 6.4: Parameter values for the shape and normalizationof the
physics background in bothΛ0

bπ− (left) andΛ0
bπ+ (right).

Parameter Λ0
bπ− Λ0

bπ+

α 0.35±0.17 0.8±0.8

Qmax (GeV/c2) 0.15±0.03 0.10±0.02

γ 1.8±0.9 0.7±0.7

Events 1936±62 1871±61

Scaled Events 109±62 105±60

Fit Probability 40% 47%

Hadronization Background

The majority of theΣb background is due to tracks from the fragmentation of prompt

Λ0
b baryons (e.g. the hadronization of theb quark). There are also tracks from the under-

lying event, or the hadronization of thepp̄ debris, but these tracks are indistinguishable

from fragmentation tracks so we use “hadronization” to denote the sum of both sources of

background tracks. Unfortunately, it is impossible to evaluate this background from data,

as theΛ0
b data sample is also ourΣb data sample. Instead this background is studied using

theΛ0
b→ Λ+

c π− PYTHIA Monte Carlo sample described in Sec. 4.6. This sample does not

contain physics or combinatorial backgrounds, and we remove all trueΣb events, leaving

behind only promptΛ0
b events. In order to evaluate theΣb background due toΛ0

b hadroniza-

tion using Monte Carlo alone, the Monte Carlo must model the data well. The background

shape is determined after the reweighting described in Sec.4.6.1.
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We evaluate the scale factor for this background as the ratioof the number ofΛ0
b in the

data to the number ofΛ0
b in the Monte Carlo sample. From theΛ0

b mass fit, theΛ0
b→Λ+

c π−

yield is 2927±58 (stat.) in theΛ0
b signal region. The number ofΛ0

b in the Monte Carlo

sample is 14,060±120, giving a scale factor of 0.208±0.042. A binned likelihood fit of

Eq. (6.1) is performed, and the results are shown in Fig. 6.12and Tab. 6.5. Both the shape

and normalization of the hadronization background are fixedin the fit to data.

Table 6.5: Parameter values for the shape and normalizationof the Λ0
b

hadronization background in bothΛ0
bπ− (left) andΛ0

bπ+ (right).

Parameter Λ0
bπ− Λ0

bπ+

α 0.66±0.06 0.67±0.25

Qmax (GeV/c2) 0.122±0.005 0.11±0.01

γ 0.73±0.01 0.86±0.31

Events 7560±123 7410±122

Scaled Events 1572±318 1541±311

Fit Probability 36% 94%

Fig. 6.13 shows theΣb Qdistribution in data along with the three backgrounds described

in these sections. Also shown is the sum of the three backgrounds, which agrees well with

the shape of the data. Aχ2 calculation gives a fit probability of 38% between the estimated

background and the data in the sideband regions. The background appears to be smooth in

theΣb signal region as well.
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Figure 6.12: Fits to theΛ0
b hadronization background distributions,

which are taken from aPYTHIA Monte Carlo sample. Left:Λ0
bπ−, right:

Λ0
bπ+. The parameter values are given in Tab. 6.5.
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Figure 6.13: The three different background components described in
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158



6.1.4 Systematic Evaluation of thePYTHIA Λ0
b Track Reweighting

As explained in Sec. 4.6.1, there are too few soft (lowpT) tracks around theΛ0
b for

the PYTHIA Monte Carlo sample to agree with data. To correct for this, we took the ra-

tio of the trackpT in data and Monte Carlo and modeled it with a linear function, and

reweighted the Monte Carlo accordingly. However, there are statistical uncertainties on the

track pT distribution in data, and the ratio distribution may be biased in a systematic way.

This propagates as a systematic uncertainty on theΛ0
b hadronizationQ background shape

which is used in theΣb fit to data.

To evaluate a possible systematic bias, we reweight the track pT spectrum from data

using the following procedure:

1. Find the number of entries and the associated Poisson error in each bin of the track

pT histogram.

2. Create a linear functionf (pT) = 0.5pT−1, which is equal to−1 at pT = 0 and+1

at pT = 4 GeV/c, above which there are very few tracks.

3. Fill a new trackpT histogram with the same entries as the original histogram, plus

the value of the bin error multiplied byf (pT) evaluated at the central value of the

pT bin.

4. Use this histogram as the new data trackpT spectrum and evaluate the ratio with the

Monte Carlo to produce a reweighting function.
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This procedure systematically moves the values within their error bars. The function in (2)

above has the effect of reducing the number of soft tracks andincreasing the number of

hard (highpT) tracks. We refer to the systematic uncertainties evaluated using this function

as the “Reweighted Down” systematics. We also use a functionf (pT) = −0.5pT + 1,

which is equal to+1 at pT = 0 and−1 at pT = 4 GeV/c. This has the reverse effect of

increasing the number of soft tracks, so we refer to the systematic uncertainties evaluated

using this function as “Reweighted Up.” In these cases, the number of events in one bin

increases or decreases at most by the value of the error on thebin; thus, we refer to these

as reweighting up or down by 1σ. We also evaluate the 2σ case using functions of the

form f (pT) = ±0.5pT∓2. The resulting linear fits to the ratio of data to Monte Carlo for

these reweighted spectra are shown in Figs. 6.14 and 6.15 forthe 1σ and 2σ reweighting

respectively. The fit parameters for all optional reweightings are given in Tab. 6.6.

Table 6.6: Parameter values for the linear functions used toreweight the
Monte Carlo, after systematically reweighting the trackpT spectrum in
data either up or down by 1 and 2σ.

Parameter Down 1σ Down 2σ Up 1 σ Up 2 σ

p0 1.59±0.06 1.44±0.06 1.89±0.06 2.02±0.07

p1 −0.274±0.041 −0.191±0.041 −0.450±0.039 −0.526±0.043

Fit Prob. 69% 42% 92% 90%

Using the new linear fits to reweight thePYTHIA Monte Carlo, we derive new shapes

for the Λ0
b hadronizationQ background. These shapes are shown in Figs. 6.16 and 6.17
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Figure 6.14: Plot of the functions used to evaluate the systematic un-
certainties due to reweighting theΛ0

b PYTHIA Monte Carlo sample up
or down by 1 σ. The left histogram shows the ratio of the track
pT spectra between data and Monte Carlo after the data spectrum has
been reweighted down by a functionf (pT) = 0.5pT−1, while the right
histogram shows the ratio after the data spectrum has been reweighted
up by a functionf (pT) = −0.5pT + 1. Parameter values are given in
Tab. 6.6.

for the 1σ and 2σ reweighting respectively. The fit parameters for all reweightings are

given in Tab. 6.7. The shape parameters change slightly fromthe default fit, although the

only systematically shifted background parameter is theQmax parameter. The 1σ varied

shapes will be used on the fit to data (Sec. 6.2.3), and to evaluate systematic errors due to

thePYTHIA Λ0
b track pT reweighting (Sec. 7.2.2).
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Figure 6.15: Plot of the functions used to evaluate the systematic un-
certainties due to reweighting theΛ0

b PYTHIA Monte Carlo sample up
or down by 2 σ. The left histogram shows the ratio of the track
pT spectra between data and Monte Carlo after the data spectrum has
been reweighted down by a functionf (pT) = 0.5pT−2, while the right
histogram shows the ratio after the data spectrum has been reweighted
up by a functionf (pT) = −0.5pT + 2. Parameter values are given in
Tab. 6.6.
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Table 6.7: Parameter values for the shape and normalizationof the Λ0
b

hadronization background in bothΛ0
bπ− andΛ0

bπ+, after performing the
reweighting described in the text (Sec. 6.1.4).

Λ0
bπ− Down 1σ Down 2σ Up 1 σ Up 2 σ

α 0.66±0.01 0.65±0.005 0.67±0.38 0.67±0.003

Qmax (GeV/c2) 0.126±0.007 0.133±0.005 0.116±0.018 0.112±0.004

γ 0.72±0.07 0.71±0.005 0.73±0.45 0.74±0.003

Number of events 7270±121 6990±118 7840±125 8120±127

Λ0
bπ+ Down 1σ Down 2σ Up 1 σ Up 2 σ

α 0.68±0.27 0.65±0.24 0.67±0.24 0.66±0.22

Qmax (GeV/c2) 0.107±0.011 0.111±0.011 0.102±0.010 0.100±0.009

γ 0.85±0.32 0.86±0.31 0.87±0.29 0.88±0.27

Number of events 7100±119 6780±116 7720±124 8030±127
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Figure 6.16: Alternate parameterizations of theΛ0
b hadronizationQ dis-

tribution from thePYTHIA Monte Carlo sample. The figures on the left
are after performing the reweighting down by 1σ, and on the right after
reweighting up by 1σ (as described in Sec. 6.1.4). The upper plots show
the Λ0

bπ− subsample while the lower plots show theΛ0
bπ+ subsample.

Parameter values are given in Tab. 6.7.
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Figure 6.17: Alternate parameterizations of theΛ0
b hadronizationQ dis-

tribution from thePYTHIA Monte Carlo sample. The figures on the left
are after performing the reweighting down by 2σ, and on the right after
reweighting up by 2σ (as described in Sec. 6.1.4). The upper plots show
the Λ0

bπ− subsample while the lower plots show theΛ0
bπ+ subsample.

Parameter values are given in Tab. 6.7.
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6.1.5 Σb Fit Description

All of the Σb background components are fixed in the fit to data, with only theΣb masses

and numbers of events left as free parameters in the fit. As described in the following sec-

tions, we fit theΛ0
bπ− andΛ0

bπ+ subsamples simultaneously with an unbinned maximum

likelihood fit. TheΣb fit is also performed using RooFit, version 2.05.

Q Detector Resolution

EachΣb state is described by a non-relativistic Breit-Wigner PDF convoluted with a

double Gaussian detector resolution. The Gaussian detector resolution is taken from the

PYTHIA Σb signal sample described in Sec. 4.6. Since the sample is generated with an input

width of zero for allΣb states, the width of the reconstructedQ peaks is a measurement of

the detector resolution. This resolution, with double Gaussian fit superimposed, is shown

for Σ−b andΣ∗−b in Fig. 6.18 with the resolution values given in Tab. 6.8. Thefit probability

is low (∼ 0.04%) due to very poorly measured tracks; these tracks formlong non-Gaussian

tails which cannot be described with a double Gaussian model. Because theΣ−b andΣ∗−b

resolution parameters are statistically compatible, we use the average values ofσnarrow =

1.17 MeV/c2 (with a weight of 0.90) andσwide = 3.0 MeV/c2 as the detector resolution

for all Σb states in the fit.
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Table 6.8: Detector resolution values inQ for Σ−b andΣ∗−b , taken from a
PYTHIA Σb Monte Carlo sample.

State σnarrow (MeV/c2) σwide (MeV/c2) Weight of narrow

Σ−b 1.14±0.04 3.0±0.2 0.92

Σ−∗b 1.19±0.03 3.0±0.2 0.88

Σb Fit Model

The predictedΣb signal is described in Sec. 2.5. We expect to see two peaks inΛ0
bπ−

for Σ(∗)−
b and two inΛ0

bπ+ for Σ(∗)+
b . The masses ofΣ(∗)−

b andΣ(∗)+
b will be very similar,

probably separated by only a few MeV/c2 as shown in Tab. 2.9. In the fit, theΣb intrinsic

width will be determined by the central value of theΣb mass according to Eq. (2.7).

Due to the low statistics of our sample, we constrain theΣ∗b−Σb mass difference to be

the same forΛ0
bπ− andΛ0

bπ+. We do not expect these mass differences to be exactly the

same, and the expected difference of 0.40±0.07 MeV/c2 is used in Sec. 7.2.2 to evaluate

systematic uncertainties from this assumption. We fit theΛ0
bπ− andΛ0

bπ+ subsamples si-

multaneously with the commonΣ∗b−Σb parameter. There are no constraints on the number

of events in each state. The seven floating parameters in the simultaneous fit are:

• Σ−b Q value

• Σ+
b Q value

• Σ∗b−Σb Q value

• Number of events for each of the fourΣb states
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Figure 6.18: Smearing due to detector resolution for theΣ−b andΣ∗−b Q
distributions in aPYTHIA Σb Monte Carlo sample. Each state is modeled
by two Gaussian distributions. Fit parameters are given in Tab. 6.8.

6.1.6 Tests of theΣb Fit

Using a preliminary fit to theΣb data, we chose theΣb input parameters shown in

Tab. 6.9 to perform stability tests of theΣb fit. A plot of the Σb signal for this set of input

parameters is shown in Fig. 6.19. As with theB∗∗ fit model (Sec. 5.1.5), we study fit stabil-

ity by generating many Toy Monte Carlo samples and evaluatingthe pulls on the floating

parameters in the fit. For theΣb fit, we use the inputΣb parameters and the background

parameterizations described in Sec. 6.1.3 to generate 2000Toy Monte Carlo experiments

of Λ0
bπ− andΛ0

bπ+ with the same statistics as the data. We then fit each sample with the

simultaneous fit. An example of one such Toy Monte Carlo sampleis shown in Fig. 6.20.

The errors on the parameters are asymmetric, which can be seen from the pull distributions
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in Fig. 6.21. When using only the parabolic error estimates for each parameter, there are

non-Gaussian tails on some of the pull distributions. The distributions in Fig. 6.21 are fit

with a unit Gaussian on the range[−2,2], with the Gaussian parameters given in Tab. 6.10.

Instead of using parabolic error estimates, we evaluate thepositive and negative errors

separately for each parameter. Occasionally, the errors ona parameter exceeded the limits

of the parameter, and one or both of the asymmetric errors could not be calculated. These

fits were removed from the pull calculations. The resulting pull distributions are shown in

Fig. 6.22 and the Gaussian parameters are given in Tab. 6.11 for a fit on the range[−5,5].

There are two pulls which deviate significantly from the unitGaussian: theΣ+
b Q value and

the Σ+
b number of events. Qualitatively, we expect this because theΣ+

b is the smallest of

the fourΣb peaks and thus more sensitive to fluctuations.

We estimate the systematic bias on each parameter by fitting the raw difference between

the input parameters and the final fit parameters for each Toy Monte Carlo sample. These

differences are shown in Fig. 6.23 and the fit results are given in Tab. 6.12. For all param-

eters, including theΣ+
b Q value and theΣ+

b number of events, the fit bias is much smaller

than the expected statistical and systematic uncertainties on that parameter. Thus we ignore

any systematic bias due to the fit model, assuming it is adequately accounted for by other

systematic and statistical uncertainties.
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Table 6.9: List of the inputΣb signal parameters used to test the fit model.

Signal parameters Values

Σ−b Q (MeV/c2) 56

Σ−b events 65

Σ+
b Q (MeV/c2) 48

Σ+
b events 32

Σ∗−b events 83

Σ∗+b events 82

Σ∗b−Σb Q (MeV/c2) 22

Table 6.10: Pulls on the floating parameters using only parabolic errors
calculated on 2000 Toy Monte Carlo samples. The Gaussian is fiton the
range[−2,2].

Signal parameters Gaussian Mean Gaussianσ

Σ−b Q 0.003±0.04 1.04±0.04

Σ−b events −0.04±0.04 1.06±0.04

Σ+
b Q 0.04±0.04 1.01±0.04

Σ+
b events 0.05±0.04 0.99±0.04

Σ∗−b events −0.21±0.04 1.06±0.04

Σ∗+b events −0.09±0.04 1.03±0.04

Σ∗b−Σb Q −0.01±0.05 1.13±0.05
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Table 6.11: Pulls on the floating parameters using separate positive and
negative errors calculated on 2000 Toy Monte Carlo samples. The Gaus-
sian is fit on a range of[−5,5].

Signal parameters Gaussian Mean Gaussianσ

Σ−b Q 0.07±0.03 1.07±0.02

Σ−b events −0.02±0.02 1.06±0.02

Σ+
b Q −0.02±0.03 1.16±0.02

Σ+
b events −0.23±0.02 0.94±0.02

Σ∗−b events 0.05±0.03 1.08±0.02

Σ∗+b events −0.03±0.03 1.07±0.03

Σ∗b−Σb Q −0.08±0.02 1.06±0.02

Table 6.12: Gaussian fit to the raw differences of the Toy Monte Carlo
samples. The mean value is an indication of the systematic bias on each
parameter due to the fit model.

Signal parameters Gaussian Mean Gaussianσ

Σ−b Q (MeV/c2) 0.05±0.04 1.5±0.03

Σ−b events −0.6±0.4 14.9±0.3

Σ+
b Q (MeV/c2) −0.09±0.05 2.0±0.03

Σ+
b events −3.0±0.3 11.6±0.2

Σ∗−b events 0.4±0.5 19.5±0.3

Σ∗+b events −0.6±0.4 18.0±0.3

Σ∗b−Σb Q (MeV/c2) −0.17±0.05 1.9±0.03
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Figure 6.19: Plot of theΣ(∗)±
b signal structure for the input parameters
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Figure 6.20: Plot of a Toy Monte Carlo sample generated with the input
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Figure 6.21: Pull distributions for all floating parametersin the simulta-
neous fit, using parabolic error estimates. The pull distributions are only
fit on the range[−2,2], and the results of the fits are listed in Tab. 6.10.
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Figure 6.22: Pull distributions for all floating parametersin the simulta-
neous fit when calculating positive and negative errors separately. The
pull distributions are fit on the range of[−5,5], and the results of the fits
are listed in Tab. 6.11.
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Figure 6.23: Raw differences for each floating parameter in the Toy
Monte Carlo samples. Each difference is fit with a Gaussian to mea-
sure the fit bias on that parameter, and the results of the fits are listed in
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likelihood (NLL) from the Toy Monte Carlo fits, with the value from the
fit to data (as described in Sec. 6.2) superimposed.
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6.2 Result of theΣb Fit to Data

After determining the background parameterizations, we look at events in theΣb sig-

nal region and observe an excess over the predicted backgrounds. In theΣb signal region

of Q ∈ [0.03,0.1] GeV/c2, the excess in theΛ0
bπ− subsample is 118 events over 288 ex-

pected background events while in theΛ0
bπ+ subsample the excess is 91 events over 313

expected background events. The distribution of these excesses is shown in Fig. 6.24 after

subtracting the parameterized backgrounds.

6.2.1 Evaluating theΣb Signal Significance

Because this is the first observation of theΣb states, it is important to establish that the

signals we observe are not fluctuations of the background. Toestimate the strength of the

four Σb signal hypothesis, we study three alternate hypotheses:

(1) No signal (null hypothesis)

(2) One peak perΛ0
bπ charge combination

(3) ThreeΣb peaks instead of four

The third hypothesis tests the strength of eachΣb peak individually.

To determine the strength of the fourΣb peak hypothesis against each alternate hypoth-

esis, we use the value of the maximized likelihood. The likelihood contains all information

about the fit. The likelihood ratio (LR) is the ratio of likelihood values for two different
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hypotheses evaluated on the same data sample. The value of theLRgives the likelihood of

the first hypothesis over the second hypothesis [75].

The fit to data is performed as a maximum likelihood fit, with RooFit returning the

equivalent minimized negative log likelihood,− ln(L ) or NLL, for each fit. In these terms,

the likelihood ratio is defined as

LR=
e−NLL1

e−NLL2
= eNLL2−NLL1 (6.2)

whereNLL1 is the negative log likelihood returned by a fit of an alternate hypothesis to

the data, andNLL2 is the negative log likelihood returned by the default fourΣb signal

hypothesis. The quantityNLL2−NLL1 is referred to as the∆NLL.

The standard evaluation of the significance of a signal is given in terms of thep-value.

The p-value is the probability that, for a given hypothesis, we would observe data as ex-

treme as what we measure. For example, if our hypothesis is that the signal we observe

is due to background fluctuations, thep-value is the probability that we would observeΣb

signals as large or larger than what we observe in data. If thesignal is very significant, then

thep-value of this null hypothesis is very small. Thep-value may also be interpreted as the

area in the tails of a unit Gaussian distribution, also knownas the “normal” distribution in

statistics; we translate this area into the equivalent number of standard deviations from the

Gaussian mean. Ap-value of∼ 2×10−2 corresponds to 2σ, which shows the hypothesis

under consideration is still reasonably likely. Ap-value of∼ 3×10−7 corresponds to 5σ,

at which point the hypothesis under consideration is highlyunlikely.
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To computep-values based on theLR for the alternateΣb hypotheses, we generate a

series of Toy Monte Carlo experiments from the alternate hypotheses. The experiments are

then fit both with the alternate hypothesis and the default four Σb signal hypothesis. From

this, we obtain a probability densityPbkg(∆NLL) to observe at least a likelihood difference

of ∆NLL for the fourΣb signal fit on a sample of an alternate hypothesis. We then use

the measuredLR from data and integratePbkg(∆NLL) from (∆NLL)data to infinity. That

integral divided by the total number of Toy Monte Carlo samples generated is thep-value.

One issue with this method of evaluating significance is the systematic variations of

the background and signal PDFs. These variations and the resulting uncertainty from each

are described in Sec. 7.2, but for thep-value calculation we must integrate the likelihood

over these systematic variations. To do this, we parameterize each systematic variation as a

constraint in the fit, which is added to the likelihood. For most of our systematic variations,

this was straightforward. These variations and their term in the likelihood are:

• Σb intrinsic width, parametergA = 0.75±0.05. The corresponding term added to the

likelihood is 1
2

(

gA−0.75
0.05

)2
.

• Σ∗b−Σb isospin splitting (defined as∆∗), predicted to be 0.40±0.07 MeV/c2. The

corresponding term added to the likelihood is1
2

(

∆∗−0.0004
0.00007

)2
.

• Λ0
b sample composition: we propagate the errors from theΛ0

b invariant mass fit to

determine errors on the normalization of eachΣb background component. This re-

sults in six terms added to the likelihood, of the same Gaussian constraint form as
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the previous two.

– Λ0
b hadronization:N(Λ0

bπ−) = 1572±318,N(Λ0
bπ+) = 1541±311.

– B hadronization:N(Λ0
bπ−) = 109±62,N(Λ0

bπ+) = 105±60.

– Combinatorial background:N(Λ0
bπ−) = 87±45,N(Λ0

bπ+) = 85±44.

The remaining systematic variations are not as straightforward. The detector resolution

is modeled with a double Gaussian, and as a systematic we consider increasing the width

of these Gaussians by 20%. To describe this systematic variation, we need an asymmetric

function which does not allow the parameters go below their default values. But we cannot

use a discontinuous function in the likelihood. Instead we look for a function that increases

rapidly below the default value, but increases like a Gaussian constraint above the default

value. To do this, we fill a histogram with randomly generatedevents distributed according

to a discontinuous function with a large “wall” below the default value and a Gaussian-

type distribution above the default value. We tried modeling this histogram with several

different functions, and the one which fit best is of the form

1
2

(

x−σ
a(1−b(x−σ))

)2

(6.3)

whereσ is the default value of the resolution width anda andb are floating parameters we

fit to the histogram. The fit of this function to the histogramsfor both values ofσ is shown

in Fig. 6.25, with parameters given in Tab. 6.13. The fits are not particularly good, but the

functions show the properties we desire: rapid increase below σ and more gradual increase
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aboveσ. The two terms added to the likelihood for the detector resolution model are of the

form of Eq. (6.3) with the values fora andb fixed from the fits.

Table 6.13: Parameter values for a fit of the form of Eq. (6.3) to the
distributions for the detector resolution likelihood constraints shown in
Fig. 6.25.

Parameter Narrow Gaussianσ = 1.2 MeV/c2 Wide Gaussianσ = 3.0 MeV/c2

a (3.99±0.01)×10−6 (2.59±0.01)×10−5

b 4214±8 518±2

The final systematic variation to consider is theΛ0
b hadronization shape. The systematic

variations of this shape are described in Sec. 7.2.2. One variation involves shifting the

number of events in theΛ0
b hadronization background; this systematic is accounted for by

the Λ0
b sample composition. The effect on theΛ0

b hadronization shape from reweighting

the PYTHIA Λ0
b Monte Carlo sample can be described by theQmax parameter, as shown in

Sec. 6.1.4. Thus to describe the reweighting, we add two Gaussian constraints on theQmax

parameters:12

(

Qmax−0.12
0.01

)2
for Λ0

bπ−, and1
2

(

Qmax−0.11
0.01

)2
for Λ0

bπ+.

This gives a total of 12 constrained parameters added to the likelihood, bringing the

number of floating parameters in the fit to 19. As a check, we runthis 19 parameter fit on the

data and compare it to the default 7 parameter fit. The resultsare shown in Sec. 6.2.2, and

there is almost no deviation in the final values for the 7 free floating parameters. However,

the fit which took 30 seconds to converge with 7 floating parameters takes nearly 5 minutes

to converge with 19 floating parameters.
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The first step in evaluating the significance via likelihood ratio is to fit the data with an

alternate hypotheses (null, twoΣb peaks, or threeΣb peaks). This is done with the appro-

priate constrained parameters added to the likelihood. Forthe null hypothesis, since there

is noΣb signal, the systematic variations related only to theΣb signal (Σb intrinsic width,

isospin splitting, and detector resolution) are not added to the likelihood. The resulting

likelihood ratios for each alternate hypothesis are given in Tab. 6.14. The null and twoΣb

peak fits to data are shown in Fig. 6.26.

For the null hypothesis, which has an extremely large∆NLL value of 42.4, we expect

that even in millions of Toy Monte Carlo samples we will never find one with as large

a ∆NLL value as in data. In fact, most of these samples will show no sign of aΣb signal.

Because the fourΣb signal fit with systematic variations takes nearly 5 minutesto converge,

it would take a prohibitive amount of processing time to run as many Toy Monte Carlo

samples as we need if the fourΣb signal fit runs over each sample. Ultimately, we decide

to run the background only fit on each Toy Monte Carlo sample generated with no signal.

Then we calculate theχ2 between the sample and the background only model in theΣb

signal region ofQ∈ [30,100] MeV/c2. If the χ2 is below a certain value, we can conclude

that the background model describes this sample well, and thus there is no need to run the

four Σb signal fit because there is no indication ofΣb signal. This sample may then be

added to the denominator of ourp-value calculation.

To determine the appropriateχ2 cut value, we generated 20,000 Toy Monte Carlo sam-

ples from the fourΣb signal model, fit them with the background only model, and calculated
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theχ2. We also fit each sample with the fourΣb signal model so that we could calculate the

∆NLL value for each sample. We then plotted the∆NLL versus the background modelχ2,

as shown in Fig. 6.27 (left). From this, we determined that all samples with a significant

amount of signal (∆NLL greater than or equal to the value found in data) should have aχ2

between the sample and background only model of greater than45. There are only 11 fits

with χ2 < 45 and∆NLL > 42; generating each of these 11 samples locally, we discovered

that the large∆NLL value was due to a failure of the fit, either the background fit or the four

Σb signal fit. Through this, we discovered that the error levelsof the systematic variations

were not being set properly, thus introducing a fit instability as the error level determines

the step size during likelihood maximization. We were able to fix this by expliciting setting

the error levels of each parameter. After rerunning the 11 fits with this fix, all converged

properly and the∆NLL of each fit was reduced to less than 40. Thus, we are confident

that using aχ2 cut at 45 will not eliminate any Toy Monte Carlo samples with potentially

significant signal.

For the null signal hypothesis, we generated almost 12 million samples. Of those,

approximately 72,700 samples had a null signal fit withχ2 > 45; the fourΣb signal fit

was only evaluated on these samples. Even after fixing the error level of the constrained

parameters, there were some failed fourΣb signal fits to the Toy Monte Carlo samples.

When a fit fails, we expect the fit status from RooFit to be returned as failed, with either an

approximate error matrix or a non-positive definite error matrix. We removed all fits which

did not end with a full, accurate error matrix. Some fits returned an accurate error matrix,
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Table 6.14: Likelihood ratiop-values for the alternate signal hypotheses,
where(∆NLL)data denotes the difference in the negative log likelihood
values for the alternate hypothesis and the default fourΣb signal hypoth-
esis in a fit to the data. For the null hypothesis, no events were observed
with the significance seen in data. Consequently, the null hypothesisp-
value is only an upper limit.

Hypothesis (∆NLL)data p-value Significance (σ)

Null 42.4 < 8.3×10−8 > 5.23

Two peaks 15.3 9.2×10−5 3.74

No Σ−b Peak 11.7 3.2×10−4 3.41

No Σ+
b Peak 3.9 9.0×10−3 2.36

No Σ∗−b Peak 10.8 6.4×10−4 3.22

No Σ∗+b Peak 11.3 6.0×10−4 3.24

but upon closer examination we found the expected distance to minimum (EDM) of the

fit was very large. A properly minimized negative log likelihood should have an EDM of

order 10−5. To remove these failed fits, we required an EDM of less than 0.01.

Even after these clearly failed fits were removed, some questionable fits remained. In

these fits, the error matrix was returned as full and accurate, the EDM was small, and yet the

χ2 between the fourΣb signal fit and the Toy Monte Carlo sample was large, on the orderof

several hundred in the signal region alone. Upon plotting some of these failed fits, we find

that one of the fourΣb peaks is an anomalous spike with a hundred or more events where

there is no peak in the sample. This failure mode proved to be independent of the ROOT and

RooFit versions. We ran several Toy Monte Carlo samples, both good seeds and anomalous
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seeds, through extensive debugging searching for memory leaks, overwrites, and any useful

debugging information. We also moved from an unbinned maximum likelihood fit to a

binned maximum likelihood fit and even a binned minimumχ2 fit. In the binned fits, the

anomalous samples either failed to converge, with a non-accurate error matrix and large

EDM, or converged to about zero events in theΣb peaks. From these exercises, we conclude

the following:

• The good seeds (identified by a lowχ2 in theΣb signal region) converged under every

fit configuration, and are consistent between binned and unbinned fits. Therefore,

they truly are good fits.

• The anomalous seeds which look like good fits (accurate errormatrix, small EDM,

but a largeχ2 in the Σb signal region) are truly failed fits. A binned fit to the same

sample will either fail to converge or converge with no events in theΣb peaks.

• The problem with the failed fits is not an instability of theΣb fit model; if it was, the

binned fits would fail in the same manner.

• The problem with the failed fits appears to be a bug in the computation of the un-

binnedNLL. When we plot the likelihood as a function of the number of events in

the anomalous spike, it is smooth with a clear minimum at the anomalous value.

The authors of RooFit have been contacted to notify them of these problems. Although

debugging work will continue, for theΣb significance calculation it is enough to show that

the fit itself is stable and to remove these failed fits from thep-value numerator.
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To remove the last of the failed fits, we use aχ2 cut on the fourΣb signal fit. From the

χ2 distribution of the fourΣb signal fit on Toy Monte Carlo samples generated with sig-

nal (Fig. 6.27, right), we see aχ2 < 100 cut should remove all anomalous samples. After

removing all failed fits, we are left with∼ 17,500 samples in the null hypothesis∆NLL dis-

tribution. None of these Toy Monte Carlo samples has close to the∆NLL found in data; the

largest value is∆NLL≈ 24. Thep-value is calculated using the total number of generated

samples, without removing the failed fits from thep-value denominator. These 12 million

samples correspond to ap-value of∼ 8.4×10−8, or a significance of 5.23σ; we know the

true p-value is less than this. As a cross-check of the likelihood ratio, we extrapolate the

∆NLL distribution out to the value found in data using a decaying exponential of the form

f (x) = p0 ·e−(x−x0)/p1 (6.4)

wherex0 = 12 is the starting point of the fit. This fit is shown in Fig. 6.28(right). The re-

sulting fit parameters and the integral above the∆NLL found in data are given in Tab. 6.15.

This extrapolation estimates ap-value of 7.0×10−14, corresponding to a significance of

7.40 σ. Qualitatively, this is about the significance we would expect from such a large

∆NLL value.

For the two and threeΣb peak alternate hypotheses, we can generate enough Toy Monte

Carlo samples to find several with a greater∆NLL than in data, so thep-values listed in

Tab. 6.14 are easily calculated. However, we again had to remove failed fits using the same

quality cuts (accurate error matrix, EDM< 0.01, and default fitχ2 < 100) as for the null

hypothesis. The∆NLL distributions for the two and threeΣb peak hypotheses are shown in
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Table 6.15: Parameter values for a decaying exponential fit to the∆NLL
distribution of background-only Toy Monte Carlo samples shown in
Fig. 6.28. The exponential is fit only to the tail of the distribution,
∆NLL > 12.

Parameter Value

p0 145±22

p1 1.56±0.16

Fit Probability 45%

Integral above 42.4 8.4×10−7

Figs. 6.29 and 6.30 respectively.

From thep-value studies, we can conclude that the null hypothesis is excluded at the

5 σ level at least. Each of the four peaks is on the order of 3σ significance on its own,

except for theΣ+
b peak which is slightly weaker than the other three peaks.
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bπ+ (bottom) subsamples. The back-

grounds have been subtracted from the data.
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Figure 6.25: Plot of the likelihood constraints for the detector resolution
parameterσ. On the left is the narrow Gaussianσ and on the right is the
wide Gaussianσ. Both histograms are modeled by Eq. (6.3), withp0 = a
andp1 = b.
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Figure 6.26: Modeling theΣb data by fits with only oneΣb state perΛ0
bπ

charge combination (left), and with no signal at all (right).
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Figure 6.27: Left: Distribution of the∆NLL versus theχ2 of a back-
ground fit to Toy Monte Carlo samples generated from theΣb sig-
nal distribution. Theχ2 is calculated only in theΣb signal region of
Q∈ [30,100] MeV/c2. The∆NLL is calculated between a background
only fit and a fourΣb signal fit to the same sample. The∆NLL value
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χ2 distribution of the fourΣb signal fits to the same Toy Monte Carlo
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Figure 6.28: The∆NLL distribution for the null hypothesisp-value cal-
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found in the Toy Monte Carlo samples was below 24, as shown on the
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Figure 6.29: The∆NLL distribution for the hypothesis of only one peak
per Λ0

bπ charge combination. The value of the∆NLL in data is marked
on the plot.
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Figure 6.30: The∆NLL distributions for each of the hypotheses of only
threeΣb peaks. There are different numbers of Toy Monte Carlo samples
in each distribution. The value of the∆NLL in data is marked on each
plot.
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6.2.2 Σb Fit Result

The result of the simultaneousΛ0
bπ− andΛ0

bπ+ fit to Σb data is shown in Fig. 6.31, with

the fit results given in Tab. 6.16 and the correlation matrix given in Tab. 6.17. For this fit,

only theΣb signal parameters are left floating, so we are concerned withthe correlations

between each of these parameters. From the correlation matrix we see only two parameters

which are highly correlated, theΣ+
b Q value and theΣ∗b−Σb Q value. This is inescapable in

the simultaneous fit; because theΣ+
b peak is smaller than the other threeΣb peaks, it relies

on theΣ∗b−Σb mass difference to fix its location.

The value of the negative log likelihood, orNLL, given in Tab. 6.16 is also shown

superimposed on the Toy Monte CarloNLL distribution in Fig. 6.23. As indicated by its

position in this distribution, this is a good fit for a data sample of this size. This is also

confirmed by theχ2 goodness of fit test, which gives a fit probability of 76% for this fit to

the region around theΣb signal,Q∈ [0, 200] MeV/c2, which is shown in Fig. 6.32.

We also repeat theΣb signal fit with the systematic variation likelihood constraints

described in Sec. 6.2.1. The results of this fit are consistent with the default fit to data, as

shown in Tabs. 6.18 and 6.19.
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Table 6.16: Parameter values from the fourΣb signal fit to data. We
quote positive and negative statistical errors separatelyas the likelihood
minima are asymmetric.

Parameter Value Parabolic Error Asymmetric Errors

Σ−b Q (MeV/c2) 55.9 0.951 (+0.973,−0.950)

Σ−b events 59 14.2 (+14.6,−13.7)

Σ+
b Q (MeV/c2) 48.5 1.97 (+1.98,−2.17)

Σ+
b events 32 12.1 (+12.5,−11.7)

Σ∗−b events 69 17.6 (+18.0,−17.1)

Σ∗+b events 77 16.8 (+17.3,−16.3)

Σ∗b−Σb Q (MeV/c2) 21.2 1.92 (+2.00,−1.94)

NLL −24160.4 – –

Table 6.17: Correlation matrix for the fourΣb signal fit to data. Only the
Σ+

b Q value and theΣ∗b−Σb Q value show a high degree of correlation.

Parameter 1 2 3 4 5 6 7

1 Σ−b Q 1.000 0.162 0.151 −0.016 −0.122 −0.017 −0.212

2 Σ−b events 0.162 1.000 −0.063 0.007 −0.246 0.007 0.088

3 Σ+
b Q 0.151 −0.063 1.000 −0.052 0.029 −0.010 −0.712

4 Σ+
b events −0.016 0.007 −0.052 1.000 −0.003 −0.164 0.074

5 Σ∗−b events −0.122 −0.246 0.029 −0.003 1.000 −0.003 −0.040

6 Σ∗+b events −0.017 0.007 −0.010 −0.164 −0.003 1.000 0.080

7 Σ∗b−Σb Q −0.212 0.088 −0.712 0.074 −0.040 0.080 1.000
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Table 6.18: Resulting values for constrained parameters in aΣb signal
fit to data when systematic variations are included as likelihood con-
straints. The values of the seven non-constrained parameters are given
in Tab. 6.19.

Parameter 7 Param. Fit 19 Param. Fit

Λ0
bπ− Comb. bkg norm 87 (fixed) 85±45

Λ0
bπ+ Comb. bkg norm 85 (fixed) 83±44

Λ0
bπ− B Had. norm 109 (fixed) 108±61

Λ0
bπ+ B Had. norm 105 (fixed) 105±59

Λ0
bπ− Λ0

b Had. norm 1572 (fixed) 1497±86

Λ0
bπ+ Λ0

b Had. norm 1541 (fixed) 1553±84

Λ0
bπ− Λ0

b Had.Qmax (GeV/c2) 0.12 (fixed) 0.123±0.007

Λ0
bπ+ Λ0

b Had.Qmax (GeV/c2) 0.11 (fixed) 0.110±0.005

Narrow Gauss. resolution(GeV/c2) 0.00117 (fixed) 0.00117±0.000006

Wide Gauss. resolution(GeV/c2) 0.003 (fixed) 0.003±0.00003

Isospin difference(GeV/c2) 0 (fixed), 0.0004 (expected) 0.00040±0.00007

Width parametergA 0.75 (fixed) 0.72±0.05
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Table 6.19: Result of the defaultΣb signal fit to data when systematic
variations are included as likelihood constraints. The number of standard
deviations from the default fourΣb signal model is shown in the last
column, and indicates the constrained parameters have little effect on the
results of the measurement.

Parameter 7 Param. Fit 19 Param. Fit Nσ difference

Σ−b Q (MeV/c2) 55.9±1.0 56.0±0.9 −0.1

Σ−b events 59±14 63±14 −0.3

Σ+
b Q (MeV/c2) 48.5±2.0 48.5±1.9 0

Σ+
b events 32±12 31±12 0.08

Σ∗−b events 69±18 77±19 −0.4

Σ∗+b events 77±17 74±18 0.2

Σ∗b−Σb Q (MeV/c2) 21.2±1.9 21.0±1.8 0.1

NLL −24160.4 −24162.5 –
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Figure 6.31: Simultaneous fit to theΛ0
bπ− andΛ0

bπ+ Σb signal in data.
The fit parameters are given in Tab. 6.16.
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Figure 6.32: Simultaneous fit to theΛ0
bπ− andΛ0

bπ+ Σb signal in data,
focusing on the region around the signal peaks ofQ∈ [0, 200] MeV/c2.
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6.2.3 Alternative Σb Signal Fits

TheΛ0
b hadronization background was determined from aPYTHIA Monte Carlo sample

which had to be reweighted twice to agree with data, as described in Sec. 4.6.1 – first for

the Λ0
b pT spectrum, and again for thepT spectrum of tracks around theΛ0

b. We also fit

the Σb data using alternate parameterizations of theΛ0
b hadronization background. These

fits serve as cross-checks of the systematic uncertainties obtained in Sec. 7.2 for theΣb

background model. The fits in this section do not use the 12 likelihood constraints.

Floating Normalization of Λ0
b Hadronization Backgrounds

The normalization of theΛ0
b hadronization background is fixed from the ratio of the

number ofΛ0
b in the Monte Carlo sample to the number ofΛ0

b in the data sample. As

a check of this normalization, we fit the data with theΛ0
b hadronization normalization

allowed to float in the fit for both theΛ0
bπ− andΛ0

bπ+ subsamples. The fit is shown in

Fig. 6.33 and fit parameters are given in Tab. 6.20. The parameters, particularly the number

of Λ0
b hadronization events, vary only slightly from the default parameters. The minimized

negative log likelihood of this fit is slightly lower than that of the default fit, indicating

it may be a slightly better fit than the default. However, since the two fits have different

numbers of floating variables, the likelihood difference cannot be translated directly into a

goodness of fit test.
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Table 6.20: Parameter values from the fit to theΣb data with theΛ0
b

hadronization background normalization floating. Also shown is the dif-
ference for each parameter from the default fourΣb signal model.

Parameter Value Difference from default

Λ0
bπ− Λ0

b Had. Norm 1548±45 −24

Λ0
bπ+ Λ0

b Had. Norm 1493±45 −48

Σ−b Q (MeV/c2) 55.9±0.9 0

Σ−b events 63±14 4

Σ+
b Q (MeV/c2) 48.5±2.0 0

Σ+
b events 32±12 0

Σ∗−b events 77±18 8

Σ∗+b events 76±17 −1

Σ∗b−Σb Q (MeV/c2) 21.2±1.9 0

NLL −24162.0 −1.6
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Figure 6.33: Plot of aΣb fit to data with theΛ0
b hadronization normaliza-

tion floating. The fit parameters are listed in Tab. 6.20.

Alternate Parameterization of Λ0
b Hadronization Backgrounds

The default fourΣb signal fit uses the functional form of Eq. (6.1) to parameterize

the Λ0
b hadronization background. There are many other shapes we could have chosen

to parameterize this background, and which one we chose may cause a systematic bias.

Another shape which describes this background well is the RooFit D∗−D0 background

shape, which also drops steeply at a cut-off value and then levels out at high mass. This

PDF consists of the cut-off parameterdm0 and three shape parameters (C, A, andB). The fit

of theD∗−D0 shape to theΛ0
b hadronization backgrounds from thePYTHIA Monte Carlo

sample is shown in Fig. 6.34 with the fit parameters given in Tab. 6.21. The numbers of

events are scaled by 0.208±0.042 as explained in Sec. 6.1.3.

We then perform the simultaneous fit to data using the alternate D∗−D0 background
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shape in place of the defaultΛ0
b hadronization parameterization. As shown in Fig. 6.35

(left) and Tab. 6.22, there is virtually no shift in the fit parameters with the alternate shape,

indicating that the fit is fairly stable in regards to theΛ0
b shape parameterization. The

positive likelihood difference indicates this fit is slightly worse than the default fit.

Table 6.21: Parameter values for the shape and normalization of the
Λ0

bπ− andΛ0
bπ+ subsampleΛ0

b hadronization backgrounds when mod-
eled by a RooFitD∗−D0 background PDF.

Parameter Λ0
bπ− Λ0

bπ+

dm0 (2.8±0.4)×10−3 (5.3±0.7)×10−5

C 0.0855±0.0003 0.074±0.008

A −0.467±0.001 −0.37±0.02

B (−1.5±0.4)×10−4 (−2.2±0.5)×10−6

Number of events 7550±123 7410±122

Scaled events 1570±317 1541±311

ReweightedΛ0
b Hadronization Backgrounds

Sec. 6.1.4 describes systematic variations of the functionused to reweight the track

pT spectrum of thePYTHIA Λ0
b Monte Carlo sample, and the effect this has on theΛ0

b

hadronization background shape. We use the 1σ reweighted up and reweighted downΛ0
b

hadronization parameterizations in a fit to data to check thesystematic effect these shapes

have on theΣb measurement.
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Table 6.22: Parameter values from the fit toΣb data with a RooFitD∗−
D0 function for theΛ0

b hadronization background shape. Also shown is
the difference for each parameter from the default fourΣb signal model.

Parameter Value Difference from default

Σ−b Q (MeV/c2) 55.9±1.0 0

Σ−b events 58±14 −1

Σ+
b Q (MeV/c2) 48.5±2.0 0

Σ+
b events 29±12 −3

Σ∗−b events 68±18 −1

Σ∗+b events 74±17 −3

Σ∗b−Σb Q (MeV/c2) 21.1±2.0 −0.1

NLL −24157 3.4
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Figure 6.34: RooFitD∗−D0 background PDF fits to theΛ0
bπ− (left) and

Λ0
bπ+ (right) subsampleΛ0

b hadronization backgrounds from the default
reweighting of thePYTHIA Monte Carlo sample.

By construction, the normalization of the reweighted down shape is too low to match

data, and that of the reweighted up shape is too high, so we must allow theΛ0
b hadroniza-

tion background normalization to float in the fit to data. The fit parameters are given in

Tabs. 6.23 and 6.24 with the fits shown in Fig. 6.36. TheΛ0
b hadronization background

reweighting turns out to be one of the largest systematic uncertainties on the numbers of

Σ(∗)±
b events, as will be shown in Sec. 7.2.2. In these fits to data, wesee large shifts in the

numbers ofΛ0
b hadronization background andΣ∗+b events.

Floating Parameterization ofΛ0
b Hadronization Backgrounds

Reweighting theΛ0
b track pT spectrum in thePYTHIA Λ0

b Monte Carlo sample changes

the shape of theΛ0
b hadronizationQ distribution; as a cross check to the reweighting shown

in the previous section, we also perform a fit where theΛ0
b hadronization parameters (α, γ,

andQmax) are allowed to float entirely. This fit is shown in Fig. 6.35 with the parameters
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Table 6.23: Parameter values for a fit to theΣb data using a systemat-
ically reweighted down parameterization of theΛ0

b hadronization. The
Λ0

b hadronization background normalization is allowed to floatin both
subsamples.

Reweighted down

Parameter Value Difference from default

Λ0
bπ− Λ0

b Had. Norm 1485±44 −87

Λ0
bπ+ Λ0

b Had. Norm 1553±45 12

Σ−b Q (MeV/c2) 55.9±0.9 0

Σ−b events 66±15 7

Σ+
b Q (MeV/c2) 48.5±2.0 0

Σ+
b events 30±12 −2

Σ∗−b events 83±18 14

Σ∗+b events 73±17 −4

Σ∗b−Σb Q (MeV/c2) 21.2±1.9 0

NLL −24162.1 −1.7
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Table 6.24: Parameter values for a fit to theΣb data using a system-
atically reweighted up parameterization of theΛ0

b hadronization. The
Λ0

b hadronization background normalization is allowed to floatin both
subsamples.

Reweighted up

Parameter Value Difference from default

Λ0
bπ− Λ0

b Had. Norm 1499±45 −73

Λ0
bπ+ Λ0

b Had. Norm 1564±46 23

Σ−b Q (MeV/c2) 55.9±0.9 0

Σ−b events 60±14 1

Σ+
b Q (MeV/c2) 48.7±2.1 0.2

Σ+
b events 26±12 −6

Σ∗−b events 74±18 5

Σ∗+b events 66±17 −11

Σ∗b−Σb Q (MeV/c2) 20.9±2.0 −0.3

NLL −24159.7 0.7
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Figure 6.35: Fit to theΣb data with alternateΛ0
b hadronization back-

ground shapes. On the left, the defaultΛ0
b hadronization background

shapes are replaced with a RooFitD∗−D0 function and the fit param-
eters are given in Tab. 6.22. On the right, the defaultΛ0

b hadronization
background shapes are left floating in the fit and the fit parameters are
given in Tab. 6.25.

given in Tab. 6.25. Except for the number ofΣ∗−b events, the parameters are only very

slightly different than the default fourΣb signal fit to data.

6.2.4 Likelihood Scans of theΣb Parameters

To ensure that our default fourΣb signal fit to data sits in a stable global minimum,

we perform negative log likelihood (NLL) scans of each floating parameter. After the fit

converges, we fix all parameters but one, and plot the value ofthe NLL as a function of

that one floating parameter. TheNLL scans over a 2.5σ range for all seven parameters are

shown in Fig. 6.37, where the minimizedNLL has been fixed to zero in all cases. Clearly
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Table 6.25: Parameter values from the fit toΣb data with theΛ0
b

hadronization background shape and normalization floating.

Parameter Value Difference from default

Λ0
bπ− Λ0

b Had. Norm 1545±45 −27

Λ0
bπ− Λ0

b Had.α 0.45±0.01 −0.22

Λ0
bπ− Λ0

b Had.γ 1.1±0.1 0.24

Λ0
bπ− Λ0

b Had.Qmax (GeV/c2) 0.11±0.003 0

Λ0
bπ+ Λ0

b Had. Norm 1477±54 −64

Λ0
bπ+ Λ0

b Had.α 0.35±0.4 −0.31

Λ0
bπ+ Λ0

b Had.γ 1.2±1.8 0.47

Λ0
bπ+ Λ0

b Had.Qmax (GeV/c2) 0.14±0.07 0.02

Σ−b Q (MeV/c2) 55.9±0.9 0

Σ−b events 67±18 8

Σ+
b Q (MeV/c2) 48.5±1.9 0

Σ+
b events 32±12 0

Σ∗−b events 89±28 20

Σ∗+b events 80±18 3

Σ∗b−Σb Q (MeV/c2) 21.3±1.8 0.1

NLL −24164.6 −4.2
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Figure 6.36: Fits toΣb data using aΛ0
b hadronization background shape

derived from alternate reweightings of thePYTHIA Monte Carlo track
pT spectrum. On the left is the reweighted down shape; the reweighted
up shape is shown on the right.

there is only one minimumNLL for each parameter. However, as we already see from the

comparison of parabolic errors to positive and negative errors, theNLL is asymmetric as a

function of the parameters.
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Figure 6.37: Negative log likelihood scans for the seven floating param-
eters in the default fourΣb signal fit to data.
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Chapter 7

Systematic Error Analysis

There are two main components to the systematic uncertainties for both theB∗∗ andΣb

analyses – mass scale uncertainty, and systematic bias fromassumptions made in the fit.

Both sources of systematic uncertainties are treated in detail below for the two analyses.

7.1 B∗∗ Systematic Errors

7.1.1 B∗∗ Mass Scale Systematics

One primary source of systematic uncertainty is the precision of the mass scale cali-

bration for the CDF II detector. Much work has gone into minimizing this error source, as

documented in Ref. [56] for theD∗∗ analysis [12]. TheD∗∗ analysis used tracks around a

fully reconstructedD meson just as theB∗∗ analysis uses tracks around a fully reconstructed

B meson. After applying the mass scale calibration, theD∗∗ analysis found the only mass
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scale systematics come from the propagation of the uncertainty in the magnetic field and

the uncertainty in ionization corrections for the central outer tracker (COT). These sources

of systematic uncertainty are the same for theB∗∗ analysis as for theD∗∗ analysis, and thus

we use theD∗∗ error estimates. The systematic uncertainties from each source for the mass

difference measurement are listed in Tab. 7.1.

Table 7.1: Mass scale systematic uncertainties for theB∗∗ measurement.
The “∆M” column shows the uncertainty on a mass difference measure-
ment, while the “Width” column shows the uncertainty on a width mea-
surement. Table reproduced from Ref. [12].

Source ∆M (MeV/c2) Width (MeV/c2)

COT corrections 0.1 0.0

Tracking/B field 0.1 0.2

7.1.2 B∗∗ Fit Systematics

With such a complicated fit model, there are many systematic uncertainties associated

with assumptions made in the fit. Since we only report the massmeasurement from the

fit to the high purityB sample, the systematic uncertainties are only evaluated onthe high

purity sample for theB1 andB∗2 masses.

To estimate these fit systematic uncertainties, we create a modified fit with one parame-

ter or input changed from the defaultB∗∗ fit. We then evaluate this modified fit on the high

purity B sampleQ distribution, and use the resulting value of the fit parameters to generate

200 Toy Monte Carlo samples. Each of these samples is first fit tothe default model and
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then to the modified model. We take the difference between thefinal parameter values for

the default and modified fits on the same sample and plot these differences. For the fits

which converged successfully, these differences follow a Gaussian distribution. However,

there are some fits which were unable to find a true minimum and thus had problems con-

verging, and these appear as a very small constant background at values far from the central

Gaussian. To account for these fits, we model the distribution by a Gaussian plus a small

constant background. The mean of the Gaussian is then taken as the systematic uncertainty

associated with changing that one parameter or input.

For each source of systematic uncertainty, the difference of these mass values between

the modified and default fits to the data sample are shown alongwith the Gaussian means

of the Toy Monte Carlo distributions. The two measurements are expected to be correlated,

since the parameter values of the modified fit to data are used to generate the Toy Monte

Carlo samples from which the average systematic shift is calculated, so this is a cross-check

of the Monte Carlo results. All sources of systematic uncertainty from assumptions made

in the fit are discussed below.

Detector Resolution Model

As described in Sec. 5.1.4, the detector resolution was initially modeled with four Gaus-

sian distributions. However, the two widest Gaussians are not expected to be well-modeled

by the Monte Carlo detector simulation and also contribute little to the overall detector

resolution, so only the two central Gaussians are used to model the detector resolution in
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the fit to data. To estimate the uncertainty from using only a double Gaussian model of

the detector resolution, we generate Toy Monte Carlo sampleswhere each signal peak is

described by a Breit-Wigner convoluted with the four Gaussian detector resolution model.

The systematic shifts in theB1 andB∗2 mass values caused by using the four Gaussian

resolution model in the Toy Monte Carlo samples are shown in Fig. 7.1 modeled by a

Gaussian plus a constant background. The mean values of the Gaussians are quoted in

Tab. 7.2 along with the differences in the mass values between the default and modified fit

on the high purity data sample. This is a relatively small systematic uncertainty.

Table 7.2: Table of systematic uncertainties as a result of using two Gaus-
sians instead of four Gaussians to model theB∗∗ detector resolution. The
first row is the mean value of the differences for 200 Toy MonteCarlo
samples where the distribution is modeled by a Gaussian plusa constant
background. The second row is the value of the difference from fits to
the high purity data sample.

Source ∆B1 Q (MeV/c2) ∆B∗2 Q (MeV/c2)

Monte Carlo 0.032 0.019

Data 0.01 0.01

Detector Resolution Underestimation

TheB∗∗ detector resolution is extracted from a signal onlyBGenerator Monte Carlo

simulation. While the detector simulation has been made as accurate as possible, the simu-

lation may still underestimate the detector resolution by underestimating the error on charge

collection in the various detector components. A reasonable estimate of this underestima-
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Figure 7.1: Plot of the difference in theB1 (left) and B∗2 (right) mass
values when fitting with the default fit versus a fit using a fourGaussian
detector resolution model. The plots are fit with a Gaussian plus a con-
stant background, with the resulting systematic uncertainties quoted in
Tab. 7.2.

tion is less than 20%. To estimate a systematic uncertainty from underestimating the detec-

tor resolution, we use a modified fit where the widths of the twoGaussians used to describe

the detector resolution are increased by 20%.

The systematic shifts in theB1 andB∗2 mass values caused by increasing the Gaussian

widths when generating the Toy Monte Carlo samples are shown in Fig. 7.2 modeled by

a Gaussian plus a constant background. The mean values of theGaussians are quoted in

Tab. 7.3 along with the differences in the mass values between the default and modified

fit on the high purity data sample. The systematic uncertainties from underestimating the

detector resolution are a factor of 10 smaller than those dueto the resolution model, as

expected since the detector resolution is much smaller thanthe intrinsic width of each peak.

Thus we take only the uncertainty from the model as a detectorresolution systematic.
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Table 7.3: Table of systematic uncertainties as a result of a20% increase
in the widths of theB∗∗ detector resolution model. The first row is the
mean value of the differences for 200 Toy Monte Carlo samples where
the distribution is modeled by a Gaussian plus a constant background.
The second row is the value of the difference from fits to the high purity
data sample.

Source ∆B1 Q (MeV/c2) ∆B∗2 Q (MeV/c2)

Monte Carlo −0.0022 0.0088

Data −0.12 0.26
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Figure 7.2: Plot of the difference in theB1 (left) and B∗2 (right) mass
values when fitting with the default fit versus a fit with an 20% increase
in the width of the detector resolution. The plots are fit witha Gaussian
plus a constant background, with the resulting systematic uncertainties
quoted in Tab. 7.3.

Background Shape

The shape of the non-combinatorial backgrounds, which consist of tracks from the un-

derlying event, pile-up events, hadronization of theB, and theB∗∗ wide states, are described

by a wide Gaussian plus a function of the form in Eq. (5.1). However, the true shape of

this background is unknown, and there are many other shapes we could have chosen to

parameterize this background; the one we chose may cause a systematic bias. To check the
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dependence of the fit on the shape used to model the non-combinatorial background, we

also try a modified fit using a third order polynomial multiplied by an exponential func-

tion to parameterize the background. The systematic shiftsin theB1 andB∗2 mass values

caused by using a different parameterization of the background in the Toy Monte Carlo

samples are shown in Fig. 7.3 modeled by a Gaussian plus a constant background. The

mean values of the Gaussians are quoted in Tab. 7.4 along withthe differences in the mass

values between the default and modified fit on the high purity data sample. TheB1 andB∗2

mass values varied little as a result of changing the background parameterization, and the

small variations are taken into account by the statistical error from letting the background

parameters float in the fit.

The default background parameterization assumes the same number ofB come from

the decay of the wideB∗∗ states as from the narrowB∗∗ states. To estimate the systematic

uncertainty due to this assumption, we took the fraction ofB from the wideB∗∗ states as

0.5±0.2. In terms of the fraction of non-combinatorial backgroundevents going into the

wide Gaussian, this translates to 0.13 as the default value,0.11 as the low value, and 0.16

as the high value. We also tried letting the normalization ofthe wide Gaussian float in the

fit rather than being constrained by the number of narrowB∗∗. The systematic shifts in the

B1 andB∗2 mass values caused by the different treatments of the normalization of the wide

background Gaussian in the Toy Monte Carlo samples are shown in Fig. 7.4 modeled by

a Gaussian plus a constant background. The mean values of theGaussians are quoted in

Tab. 7.4 along with the differences in the mass values between the default and modified fit
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on the high purity data sample.

For the systematic uncertainty due to parameterization of the non-combinatorial back-

ground, we took the largest uncertainty on each of the measured quantities from all the

simulations listed above. Thus, the systematic uncertainty on theB1 mass is taken from

setting the fraction of events to 0.11 while the systematic uncertainty on theB∗2 mass is

taken from allowing the normalization of the wide Gaussian to float in the fit.
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Figure 7.3: Plot of the difference in theB1 (left) and B∗2 (right) mass
values when fitting with the default fit versus a fit with the background
parameterized by a third order polynomial multiplied by an exponential.
The plots are fit with a Gaussian plus a constant background, with the
resulting systematic uncertainties quoted in Tab. 7.4.
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Table 7.4: Table of systematic uncertainties as a result of different param-
eterizations of theB∗∗ background shape. Under each parameterization,
the first row is the mean value of the differences for 200 Toy Monte Carlo
samples where the distribution is modeled by a Gaussian plusa constant
background. The second row is the value of the difference from fits to
the high purity data sample.

Source ∆B1 Q (MeV/c2) ∆B∗2 Q (MeV/c2)

Polynomial multiplied by exponential

Monte Carlo −0.030 −0.13

Data −0.44 −0.55

Wide fraction floating

Monte Carlo −0.079 0.74

Data −0.09 0.72

Wide fraction = 0.11

Monte Carlo 0.49 0.093

Data 1.0 −0.08

Wide fraction = 0.16

Monte Carlo 0.0082 0.072

Data −0.01 0.12
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Figure 7.4: Plot of the difference in theB1 (left) andB∗2 (right) mass val-
ues when fitting with the default fit versus fits varying the wide Gaussian
background component normalization. The first row uses a fit with the
normalization floating. The second row uses a fit with the normalization
decreased to 0.11 (default value is 0.13). The third row shows a fit with
the normalization increased to 0.16. The plots are fit with a Gaussian
plus a constant background, with the resulting systematic uncertainties
quoted in Tab. 7.4.
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Intrinsic Width of the Narrow B∗∗ States

Due to the low statistics of the high purityB sample, the fit is not sensitive to the width

of the narrowB∗∗ states. Therefore, the narrowB∗2 width is fixed to 16 MeV/c2, a theoretical

prediction with an error of 6 MeV/c2 [8]. The ratioΓ(B1)
Γ(B∗2)

is fixed to be 1.0, but there is also

a theoretical prediction from Ref. [8] that the ratio should be 0.9.

Unlike the background parameterizations, these two assumptions are correlated as both

affect the narrowB∗∗ widths. To estimate the true systematic uncertainty on the width,

we vary both of these assumptions together. Thus, we generate Toy Monte Carlo samples

with the ratio Γ(B1)
Γ(B∗2)

fixed to 1.0 and the narrow widths set to the±1 σ values of 10 and

22 MeV/c2. We also generate Toy Monte Carlo samples with the ratioΓ(B1)
Γ(B∗2)

fixed to 0.9

for the default and±1 σ values of the narrow width.

The systematic shifts in theB1 and B∗2 mass values caused by the variations in the

narrowB∗∗ width in Toy Monte Carlo samples are shown in Figs. 7.5 and 7.6 modeled by

a Gaussian plus a constant background. The mean values of theGaussians are quoted in

Tab. 7.5 along with the differences in the mass values between the default and modified fit

on the high purity data sample.

Once again we take the largest uncertainty on each parameteras the systematic uncer-

tainty due to fixing theB∗∗ intrinsic width. Thus for the systematic uncertainty on theB1

mass measurement we use the case whereΓ(B∗2) = 10 MeV/c2 and Γ(B1)
Γ(B∗2)

= 1.0, while for

the systematic uncertainty on theB∗2 mass measurement we use the case whereΓ(B∗2) = 10

MeV/c2 and Γ(B1)
Γ(B∗2)

= 0.9.
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Figure 7.5: Plot of the difference in theB1 (left) and B∗2 (right) mass
values when fitting with the default fit versus fits with variedvalues for
theB∗2 width. In the first row, the fit usesΓ(B∗2) = 10 MeV/c2, while in

the second row the fit usesΓ(B∗2) = 22 MeV/c2. In both casesΓ(B1)
Γ(B∗2)

is
fixed to the default value of 1. The plots are fit with a Gaussianplus a
constant background, with the resulting systematic uncertainties quoted
in Tab. 7.5.
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Table 7.5: Table of systematic uncertainties as a result of different pa-
rameterizations of the narrowB∗∗ widths. Under each parameterization,
the first row is the mean value of the differences for 200 Toy Monte Carlo
samples where the distribution is modeled by a Gaussian plusa constant
background. The second row is the value of the difference from fits to
the high purity data sample.

Γ(B∗2) (MeV/c2) Source ∆B1 Q (MeV/c2) ∆B∗2 Q (MeV/c2)

Γ(B1)
Γ(B∗2)

= 1.0

10 Monte Carlo 0.16 −0.42

Data 0.93 −1.2

22 Monte Carlo −0.054 −0.089

Data −0.02 0.29

Γ(B1)
Γ(B∗2)

= 0.9

16 Monte Carlo −0.034 −0.046

Data −0.11 −0.07

10 Monte Carlo 0.13 −0.70

Data 0.93 −1.3

22 Monte Carlo −0.16 −0.11

Data −0.21 0.31
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Figure 7.6: Plot of the difference in theB1 (left) and B∗2 (right) mass
values when fitting with the default fit versus fits with variedvalues of
Γ(B∗2) and Γ(B1)

Γ(B∗2)
fixed to 0.9. In the first row, the fit usesΓ(B∗2) = 16

MeV/c2 (the default value). In the second row, the fit usesΓ(B∗2) = 10
MeV/c2. In the third row, the fit usesΓ(B∗2) = 22 MeV/c2. The plots
are fit with a Gaussian plus a constant background, with the resulting
systematic uncertainties quoted in Tab. 7.5.
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Fraction of B∗2 Events

We also make several assumptions which directly affect the number of events in theB∗2

peaks. The first of these is the use of the theoretical prediction for the branching ratio

BR(B∗2→ Bπ)

BR(B∗2→ B∗π)
= 1.1±0.3

which fixes the normalization of theB∗2→ B∗π peak relative to theB∗2→ Bπ peak. The

second assumption fixes the relative fraction ofB∗∗ which areB∗2→ Bπ; we could not find

a theoretical value for this fraction, but there is currently insufficient statistics to allow this

parameter to float in the fit. Therefore, we performed a preliminary fit to the high purity

sample in which this parameter was allowed to float, and used the value of 0.23± 0.08

(stat.) from this fit. As these assumptions both affect the number of events in theB∗2 peaks,

we varied them both at the±1 σ level together.

The systematic shifts in theB1 andB∗2 mass values caused by varying the number of

events in theB∗2 peaks in Toy Monte Carlo samples are shown in Figs. 7.7 through7.9

modeled by a Gaussian plus a constant background. The mean values of the Gaussians

are quoted in Tabs. 7.6 and 7.7 along with the differences in the mass values between the

default and modified fit on the high purity data sample.

Once again we take the largest uncertainty on each parameteras the systematic uncer-

tainty due to fixing the numbers ofB∗2 events. In this case, the largest uncertainty for both

the B1 andB∗2 mass measurement is taken in the case whereB∗2→B∗π
B∗2→Bπ = 0.8 andB∗2→Bπ

B∗∗ =

0.31.
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Figure 7.7: Plot of the difference in theB1 (left) and B∗2 (right) mass
values when fitting with the default fit versus fits with varying values of
theB∗2 branching ratio. In the first row, the fit uses aB∗2 branching ratio
of 0.8 (the default value is 1.1). In the second row, the fit uses a B∗2
branching ratio of 1.4. In both cases, the fraction ofB∗2 events is fixed
to the default value of 0.23. The plots are fit with a Gaussian plus a
constant background, with the resulting systematic uncertainties quoted
in Tab. 7.6.
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Table 7.6: First table of systematic uncertainties as a result of assump-
tions made for theB∗2 branching fractions. Under each parameterization,
the first row is the mean value of the differences for 200 Toy Monte Carlo
samples where the distribution is modeled by a Gaussian plusa constant
background. The second row is the value of the difference from fits to
the high purity data sample.

B∗2→B∗π
B∗2→Bπ Source ∆B1 Q (MeV/c2) ∆B∗2 Q (MeV/c2)

B∗2→Bπ
B∗∗ = 0.23

0.8 Monte Carlo 0.44 0.30

Data 0.86 −0.16

1.4 Monte Carlo −0.21 −0.096

Data −0.4 0.14

B∗2→Bπ
B∗∗ = 0.15

1.1 Monte Carlo −0.36 −0.27

Data −0.72 0.18

0.8 Monte Carlo −0.53 −0.022

Data 2.3 −0.18

1.4 Monte Carlo −0.55 −0.44

Data −0.58 −1.8
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Figure 7.8: Plot of the difference in theB1 (left) andB∗2 (right) mass val-
ues when fitting with the default fit versus fits varying theB∗2 branching

ratio and with theB∗2→Bπ
B∗∗ fixed to 0.15 (default is 0.23). In the first row,

the fit uses the default value ofB∗2 branching ratio = 1.1. In the second
row, the fit usesB∗2 branching ratio = 0.8. In the third row, the fit uses
B∗2 branching ratio = 1.4. The plots are fit with a Gaussian plus a con-
stant background, with the resulting systematic uncertainties quoted in
Tab. 7.6.
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Table 7.7: Second table of systematic uncertainties as a result of assump-
tions made for theB∗2 branching fractions. Under each parameterization,
the first row is the mean value of the differences for 200 Toy Monte Carlo
samples where the distribution is modeled by a Gaussian plusa constant
background. The second row is the value of the difference from fits to
the high purity data sample.

B∗2→B∗π
B∗2→Bπ Source ∆B1 Q (MeV/c2) ∆B∗2 Q (MeV/c2)

B∗2→Bπ
B∗∗ = 0.31

1.1 Monte Carlo 0.58 0.24

Data 1.0 0.17

0.8 Monte Carlo 1.8 0.57

Data 2.8 0.28

1.4 Monte Carlo 0.28 0.14

Data 0.36 0.15
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Figure 7.9: Plot of the difference in theB1 (left) andB∗2 (right) mass val-
ues when fitting with the default fit versus fits varying theB∗2 branching

ratio and with theB∗2→Bπ
B∗∗ fixed to 0.31 (default is 0.23). In the first row,

the fit uses the default value ofB∗2 branching ratio = 1.1. In the second
row, the fit usesB∗2 branching ratio = 0.8. In the third row, the fit uses
B∗2 branching ratio = 1.4. The plots are fit with a Gaussian plus a con-
stant background, with the resulting systematic uncertainties quoted in
Tab. 7.7.
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Smearing Caused by Photon Release inB∗ Decay

The final systematic effect on the narrowB∗∗ peaks is the energy of the photon from

B∗ decays, which isE(γ) = 45.78±0.35 MeV/c2 [1]. Although the error on this energy is

small, it is comparable to the size of the previous systematic uncertainties. We again use a

±1 σ variation of this value to estimate the systematic uncertainty.

The systematic shifts in theB1 andB∗2 mass values caused by varying the energy of

the photon by±1 σ in Toy Monte Carlo samples are shown in Fig. 7.10 modeled by a

Gaussian plus a constant background. The mean values of the Gaussians are quoted in

Tab. 7.8 along with the differences in the mass values between the default and modified

fit on the high purity data sample. There is a slightly larger systematic shift from taking

E(γ) = 45.43 MeV/c2, so we use this scenario to determine the systematic uncertainties

on theB1 andB∗2 mass measurement.

Parameterization of theB∗∗s Contribution

With experimental confirmation only of theB∗s2→ BK state, the contribution ofB∗∗s to

theB∗∗ Q distribution is difficult to estimate. The parameterization used in the default fit is

a single Gaussian fit to the smeared peaks of theB∗s2→B(∗)K state generated in thePYTHIA

B∗∗ sample described in Sec. 5.1.4.

We use two alternateB∗∗s parameterizations to estimate the resulting systematic uncer-

tainty. The first is the double Gaussian parameterization described in Sec. 5.1.4. As the

widths of theB∗s2 signal in ourPYTHIA Monte Carlo sample were set to 5 MeV/c2 rather
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Table 7.8: Table of systematic uncertainties as a result of the uncertainty
on the photon energy fromB∗ decay. For each parameterization, the
first row is the mean value of the differences for 200 Toy MonteCarlo
samples where the distribution is modeled by a Gaussian plusa constant
background. The second row is the value of the difference from fits to
the high purity data sample.

Source ∆B1 Q (MeV/c2) ∆B∗2 Q (MeV/c2)

E(γ) = 45.43 MeV/c2

Monte Carlo 0.059 0.092

Data 0.12 0.02

E(γ) = 46.13 MeV/c2

Monte Carlo −0.049 −0.087

Data −0.13 −0.01

than the theoretical prediction of 20 MeV/c2, we also modified the single Gaussian param-

eterization by increasing the Gaussian widthσ to four times its default value. For both of

these parameterizations, the normalization of theB∗∗s remains fixed to the same value used

in the default fit.

The systematic shifts in theB1 andB∗2 mass values caused by the parameterization of

the B∗∗s component in the Toy Monte Carlo samples are shown in Fig. 7.11modeled by

a Gaussian plus a constant background. The mean values of theGaussians are quoted in

Tab. 7.9 along with the differences in the mass values between the default and modified fit

on the high purity data sample.

For the systematic uncertainty due to parameterization of theB∗∗s contribution, we took
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Figure 7.10: Plot of the difference in theB1 (left) andB∗2 (right) mass
values when fitting with the default fit versus fits varying theenergy of
the photon from theB∗ decay. In the first row, the fit uses a decreased
energy of 45.43 MeV/c2 (default value is 45.78 MeV/c2). In the sec-
ond row, the fit uses an increased energy of 46.13 MeV/c2. The plots
are fit with a Gaussian plus a constant background, with the resulting
systematic uncertainties quoted in Tab. 7.8.

the largest uncertainty on each of the measured quantities from the two alternate param-

eterizations. Thus, the systematic uncertainty on theB1 mass is taken from the double

GaussianB∗∗s parameterization while the systematic uncertainty on theB∗2 mass is taken

from increasing the width of the single GaussianB∗∗s parameterization.

Normalization of the B∗∗s Contribution

In addition to a fixed parameterization of theB∗∗s component, the number ofB∗∗s events

is fixed by the ratio ofB∗∗s to B mesons in thePYTHIA Monte Carlo simulation. To estimate
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Table 7.9: Table of systematic uncertainties as a result of the parameter-
ization of theB∗∗s component. For each parameterization, the first row
is the mean value of the differences for 200 Toy Monte Carlo samples
where the distribution is modeled by a Gaussian plus a constant back-
ground. The second row is the value of the difference from fitsto the
high purity data sample.

Source ∆B1 Q (MeV/c2) ∆B∗2 Q (MeV/c2)

B∗∗s double Gaussian parameterization

Monte Carlo −0.086 −0.036

Data −0.11 0.02

B∗∗s single Gaussian, increased width

Monte Carlo 0.049 0.061

Data 0.02 0.01

the systematic uncertainty on this normalization factor, we use a modified fit where the

number ofB∗∗s events is allowed to float in the fit without any constraints.

The systematic shifts in theB1 andB∗2 mass values caused by allowing the normalization

of the B∗∗s component to float in the Toy Monte Carlo samples are shown in Fig. 7.12

modeled by a Gaussian plus a constant background. The mean values of the Gaussians are

quoted in Tab. 7.10 along with the differences in the mass values between the default and

modified fit on the high purity data sample.
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Figure 7.11: Plot of the difference in theB1 (left) andB∗2 (right) mass
values when fitting with the default fit versus fits with alternateB∗∗s pa-
rameterizations. In the first row, theB∗∗s component is modeled by a
double Gaussian distribution. In the second row, the width of the single
Gaussian used to model theB∗∗s component has been increased by a fac-
tor of four. The plots are fit with a Gaussian plus a constant background,
with the resulting systematic uncertainties quoted in Tab.7.9.

7.1.3 B∗∗ Systematics Summary

The summary of all systematic uncertainties due to the mass scale and assumptions

made in the fit to data is given in Tab. 7.11. We use only the absolute value of each system-

atic shift rather than accounting for shifts in the positiveand negative directions separately.

The final row in this table lists the total systematic uncertainties which will be quoted for

theB1 andB∗2 mass measurements.
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Table 7.10: Table of systematic uncertainties as a result ofallowing the
normalization of theB∗∗s component to float in the fit. For each parame-
terization, the first row is the mean value of the differencesfor 200 Toy
Monte Carlo samples where the distribution is modeled by a Gaussian
plus a constant background. The second row is the value of thediffer-
ence from fits to the high purity data sample.

Source ∆B1 Q (MeV/c2) ∆B∗2 Q (MeV/c2)

Monte Carlo −0.17 −0.15

Data −0.26 −0.18
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Figure 7.12: Plot of the difference in theB1 (left) andB∗2 (right) mass
values when fitting with the default fit versus a fit where the normaliza-
tion of theB∗∗s component is allowed to float in the fit. The plots are fit
with a Gaussian plus a constant background, with the resulting system-
atic uncertainties quoted in Tab. 7.10.
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Table 7.11: Table of all systematic uncertainties. The finalrow shows the
total systematic uncertainty on theB∗∗ measurements, which is the sum
in quadrature of the individual contributions.

Source ∆B1 Q (MeV/c2) ∆B∗2 Q (MeV/c2)

COT corrections 0.1 0.1

Tracking/B field 0.1 0.1

Detector resolution 0.032 0.019

Background shape 0.49 0.74

B∗∗ intrinsic width 0.16 0.70

B∗2 fraction 1.8 0.57

E(γ) measurement 0.059 0.092

B∗∗s shape 0.086 0.061

B∗∗s normalization 0.17 0.15

Total 1.9 1.2
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7.2 Σb Systematic Errors

7.2.1 Σb Mass Scale Systematics

For theΣb analysis, the source of the mass scale systematic uncertainty is the same

as for theB∗∗ analysis: the precision of the calibration. However, for the Σb masses we

employ a more sophisticated technique to estimate the valueof this uncertainty for each of

the measuredΣb Q values.

To determine the systematic uncertainty due to calibrationof the energy scale, we com-

pare the masses of theD∗, Σ0
c, Σ++

c , andΛ∗+c particles measured at CDF with the world

average values after removing the CDF measurements [1]. For these decays which release

little kinetic energy, the figure of merit is theQ-value; this is defined as the∆M value less

the pion mass (or two pion masses, in the case of theΛ∗+c ). In a previous analysis, it has

been shown that the systematic uncertainity on theQ value may be approximated as linear,

δQ = a ·Q+ δm [76]. We thus plot the difference between the CDF and world average

mass measurements as a function of theQ value of the decays, and fit the graph to a linear

function. This linear function is then evaluated at theΣb Q value to give an estimate of the

systematic uncertainty.

To avoid accounting for correlations between the slope and the y-intercept in the fit

function, we introduce an offset of the fit variable equal to the Σb Q value. For example,

theΣ+
b Q value is 48.5 MeV/c2, so the fit takes the formδQ = a · (Q−48.5)+δm. In this

case, the interceptδm is the bias on theQ value.
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The mass difference graph is shown in Fig. 7.13 with four fits,one for eachΣb state,

and the fit parameters are given in Tab. 7.12. Due to the large uncertainties on theΣ0
c, Σ++

c ,

andΛ∗+c mass measurements, there are large statistical uncertainties on the parameters of

these linear fits. Since the value of they-intercept is much smaller than its statistical error,

we take the error on the intercept as the mass scale systematic uncertainty. To calculate

a systematic uncertainty on the mass difference,Σ∗b−Σb Q, we take the slope of the line

and multiply it by the mass difference value. As the slope is smaller than its statistical

uncertainty, we use the error of 0.004 MeV/c2 and multiply it by the mass difference of

21.2 MeV/c2. This results in a relative mass shift of∼ 0.09 MeV/c2 which we round up

to 0.1 MeV/c2 for the mass scale systematic uncertainty on theΣ∗b−Σb Q value. The mass

scale calibration is the dominant systematic uncertainty on theΣb Q measurements.

Table 7.12: Fit parameters and mass scale systematic uncertainties for
theΣb mass difference measurement. All are in units of MeV/c2.

Particle Q Slope Intercept Fit Prob.

Σ+
b 48.5 −0.001±0.004 −0.006±0.19 58%

Σ−b 55.9 −0.001±0.004 −0.01±0.22 58%

Σ∗+b 69.7 −0.001±0.004 −0.03±0.28 58%

Σ∗−b 77.1 −0.001±0.004 −0.03±0.32 58%
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Figure 7.13: Graph of theD∗, Σ0
c, Σ++

c , andΛ∗+c mass differences be-
tween the CDF measurements and the world average values, plotted ver-
sus theQ value of each decay. The graph is fitted with four linear func-
tions, one for eachΣb state, to determine the mass scale systematic un-
certainty at eachΣb Q value.

7.2.2 Σb Fit Systematics

The systematic uncertainties related to assumptions made in the fit are calculated for

Σb in almost the same manner as forB∗∗. For theΣb analysis, we generate 500 Toy Monte

Carlo samples instead of only 200 as in theB∗∗ analysis. TheΣb fit is also more stable than

the B∗∗ fit, due to the fact that theΣb backgrounds are all fixed in the fit. Thus, the sys-

tematic shift distributions are fit with only a Gaussian distribution, rather than a Gaussian

plus a constant background. Occasionally, failed fits appear as an unnatural “spike” in the

distributions, but to the first order these do not affect the mean of the Gaussian fit. Some

distributions also have non-Gaussian tails (see for example, Fig. 7.17). In these cases, the

Gaussian mean is usually larger than the average value, leading to a slight overestimation
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of the systematic uncertainty rather than an underestimation.

We compute systematic uncertainties on the number of eventsin eachΣb peak as well

as on theΣb Q values. For the number ofΣ(∗)±
b events, some systematic shifts occur pre-

dominantly in one direction, such as the systematic uncertainty on theΛ0
b hadronization

background shape. Consequently, we quote positive and negative systematic uncertainties

separately on all measured quantities.

The following paragraphs each describe a source of systematic uncertainty in the fit,

the variations used to determine the systematic shift of each, and the value of each system-

atic shift. We also evaluate the uncertainty on theΣ∗±b Q values, which are equivalent to

the Σ±b +(Σ∗b−Σb) Q values, in order to quote an accurate systematic uncertainty on the

absoluteΣ∗±b masses.

Λ0
b Sample Composition

The normalizations of the threeΣb backgrounds, described in Sec. 6.1.3, are all deter-

mined from theΛ0
b invariant mass fit described in Sec. 4.5. This parameterization of the

Λ0
b mass has both statistical and systematic uncertainties associated with it, particularly

from the Monte Carlo templates used to derive the many background shapes. Thus, theΛ0
b

sample composition (percentage of background events whichare from promptΛ0
b baryons,

B mesons, or combinatorial background) has associated errors. To evaluate the systematic

shift from uncertainty in theΛ0
b sample composition, we shift the relative normalizations

of the background components in the fit. As theΛ0
b hadronization background is by far the
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largest background, we take some number of events away from this background and add

them in equal numbers to the two smaller backgrounds, the combinatorial and theB meson

hadronization.

We first tried taking 100 events fromΛ0
b hadronization background and adding 50 to

each of the smaller backgrounds. This showed little systematic effect, as seen in Fig. 7.14.

We then subtracted 200 events fromΛ0
b hadronization background, adding 100 to each of

the smaller backgrounds. This also had a fairly small effect, as seen in Fig. 7.15. Fi-

nally, we took 400 events fromΛ0
b hadronization background and added 200 to each of the

smaller backgrounds, more than doubling the number of events in the two smaller back-

grounds. This is a very extreme change in the sample composition. The systematic shifts

for this scenario are shown in Fig. 7.16. The systematic shifts for each of the seven floating

parameters under each scenario are shown in Tab. 7.13. The third case, where 400 events

are removed from theΛ0
b hadronization background, is used for the systematic uncertainty

due toΛ0
b sample composition because it produces the largest uncertainties. This is a small

systematic error even under such an extreme case, indicating that our result is not sensitive

to theΛ0
b sample composition and is, to the first order, independent oftheΛ0

b invariant mass

parameterization.

242



Table 7.13: Table of systematic uncertainties on theΣb measurement as
a result of shifting a given number of events from theΛ0

b hadronization
background to the two smaller background components, theB meson and
combinatorial backgrounds. The systematic uncertainty oneach parame-
ter is computed as the Gaussian mean value of the difference between the
default and modified fit parameters for 500 Toy Monte Carlo samples.

Parameter 100 events 200 events 400 events

Σ−b Q (MeV/c2) −0.009±0.001 −0.014±0.001 −0.029±0.002

Σ−b events 0.143±0.004 0.322±0.004 0.68±0.01

Σ+
b Q (MeV/c2) 0.007±0.001 0.014±0.002 0.027±0.003

Σ+
b events 0.84±0.01 1.61±0.02 3.30±0.04

Σ∗−b events 0.099±0.004 0.21±0.01 0.39±0.01

Σ∗+b events 1.83±0.01 3.66±0.02 7.28±0.03

Σ∗b−Σb Q (MeV/c2) 0.015±0.001 0.029±0.002 0.052±0.005

Σ∗−b Q (MeV/c2) 0.007±0.001 0.014±0.002 0.017±0.003

Σ∗+b Q (MeV/c2) 0.023±0.001 0.043±0.002 0.089±0.003
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Figure 7.14: Plot of the difference in theΣb fit parameters when fitting
with the default fit versus a fit where 100 events have been transferred
from theΛ0

b hadronization background to the two smaller backgrounds.
The distributions are modeled by a Gaussian distribution, with the result-
ing systematic uncertainties quoted in Tab. 7.13.
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Figure 7.15: Plot of the difference in theΣb fit parameters when fitting
with the default fit versus a fit where 200 events have been transferred
from theΛ0

b hadronization background to the two smaller backgrounds.
The distributions are modeled by a Gaussian distribution, with the result-
ing systematic uncertainties quoted in Tab. 7.13.
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Figure 7.16: Plot of the difference in theΣb fit parameters when fitting
with the default fit versus a fit where 400 events have been transferred
from theΛ0

b hadronization background to the two smaller backgrounds.
The distributions are modeled by a Gaussian distribution, with the result-
ing systematic uncertainties quoted in Tab. 7.13.
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Parameterization of theΛ0
b Hadronization Background

The shape and normalization of theΛ0
b hadronization background are both taken from

a PYTHIA Λ0
b Monte Carlo simulation which must be reweighted to agree withdata. Con-

sequently, there are several possible sources of systematic uncertainties in the parameteri-

zation of this background, which are described below.

The first systematic to consider is the normalization of theΛ0
b hadronization shape. This

normalization is taken from the ratio of the number ofΛ0
b in the Monte Carlo sample to the

number ofΛ0
b in the data sample. The number ofΛ0

b in data is given by theΛ0
b mass fit,

which was already tested through theΛ0
b sample composition. However, if the number of

Λ0
b in the Monte Carlo is incorrect even after reweighting theΛ0

b pT spectrum, the normal-

ization could also be incorrect. To test this, we kept the shape of theΛ0
b hadronization

background fixed but shifted the number of events.

If the normalization of theΛ0
b hadronization background is allowed to float in the fit,

we find a statistical error of about 45 events on both theΛ0
bπ− and Λ0

bπ+ backgrounds

(Sec. 6.2.3). Thus we generate Toy Monte Carlo samples with both Λ0
bπ− andΛ0

bπ+ Λ0
b

hadronization backgrounds either increased or decreased by 45 events. The resulting sys-

tematic shifts are shown in Figs. 7.17 and 7.18, and given in Tab. 7.14. The effect on the

mass measurements is minimal, but there is some systematic shift of the numbers ofΣb

events. We take the largest value as the systematic uncertainty on each parameter due to

fixing theΛ0
b hadronization normalization.

The second systematic source to consider is the parameterization of theΛ0
b hadroniza-
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Table 7.14: Table of systematic uncertainties as a result ofshifting the
number of events in theΛ0

b hadronization by 45. The systematic uncer-
tainty on each parameter is computed as the Gaussian mean value of the
difference between the default and modified fit parameters for 500 Toy
Monte Carlo samples.

Parameter Λ0
b Had. Norm.−45 Λ0

b Had. Norm.+45

Σ−b Q (MeV/c2) −0.002±0.001 0.009±0.002

Σ−b events 2.23±0.01 −2.20±0.01

Σ+
b Q (MeV/c2) −0.013±0.002 0.013±0.002

Σ+
b events 2.07±0.01 −2.09±0.01

Σ∗−b events 4.77±0.02 −4.72±0.03

Σ∗+b events 4.81±0.02 −4.80±0.03

Σ∗b−Σb Q (MeV/c2) 0.135±0.003 −0.129±0.002

Σ∗−b Q (MeV/c2) 0.133±0.003 −0.133±0.003

Σ∗+b Q (MeV/c2) 0.122±0.003 −0.128±0.003

tion background. An alternate parameterization using the RooFit D∗−D0 PDF is described

in Sec. 6.2.3. To determine the size of this systematic uncertainty, we generate Toy Monte

Carlo samples with theD∗−D0 background and then fit with the default background shape

as well as the alternate shape. The systematic shifts are shown in Fig. 7.19 and given in

Tab. 7.15. As expected, there is very little shift in theQ measurements and a small effect

on the number of events.

The third and final source of systematic uncertainties relating to theΛ0
b hadronization
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Table 7.15: Table of systematic uncertainties as a result ofusing an alter-
nate parameterization, the RooFitD∗−D0 PDF, of theΛ0

b hadronization
background. The systematic uncertainty on each parameter is computed
as the Gaussian mean value of the difference between the default and
modified fit parameters for 500 Toy Monte Carlo samples.

Parameter Systematic Shift

Σ−b Q (MeV/c2) −0.011±0.001

Σ−b events 0.268±0.004

Σ+
b Q (MeV/c2) 0.013±0.001

Σ+
b events 1.16±0.01

Σ∗−b events 0.326±0.004

Σ∗+b events 2.76±0.02

Σ∗b−Σb Q (MeV/c2) 0.038±0.002

Σ∗−b Q (MeV/c2) 0.029±0.002

Σ∗+b Q (MeV/c2) 0.053±0.002

background is the effect of reweighting thePYTHIA Monte Carlo trackpT spectrum to

agree with data. The procedure for the 1σ “Reweighted Down” and “Reweighted Up”

Λ0
b hadronization parameterizations has been described in Sec. 6.1.4, and the fit of these

alternate shapes to data is shown in Sec. 6.2.3. To estimate the systematic shift associated

with this reweighting, we took the background shapes from Tab. 6.7 and theΛ0
bπ− and

Λ0
bπ+ hadronization normalizations from Tab. 6.23, and generated Toy Monte Carlo with

these as the inputΛ0
b hadronization parameterization. The resulting systematic shifts are
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shown in Figs. 7.20 and 7.21, and summarized in Tab. 7.16. As expected, this is one of the

dominant sources of systematic uncertainty on the number ofΣb events.

Table 7.16: Table of systematic uncertainties as a result ofusing alter-
nate reweightings of theΛ0

b hadronization background. The systematic
uncertainty on each parameter is computed as the Gaussian mean value
of the difference between the default and modified fit parameters for 500
Toy Monte Carlo samples.

Parameter Λ0
b Had. Reweighted Down Λ0

b Had. Reweighted Up

Σ−b Q (MeV/c2) −0.0004±0.002 0.038±0.001

Σ−b events 7.38±0.02 1.84±0.01

Σ+
b Q (MeV/c2) −0.112±0.004 −0.050±0.003

Σ+
b events 2.32±0.01 −1.78±0.01

Σ∗−b events 14.7±0.04 5.23±0.02

Σ∗+b events 4.58±0.01 −2.88±0.01

Σ∗b−Σb Q (MeV/c2) 0.314±0.006 0.078±0.004

Σ∗−b Q (MeV/c2) 0.317±0.005 0.117±0.004

Σ∗+b Q (MeV/c2) 0.166±0.004 0.022±0.002
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Figure 7.17: Plot of the difference in theΣb fit parameters when fitting
with the default fit versus a fit where the number ofΛ0

b hadronization
events has been reduced by 45 events. The distributions are modeled
by a Gaussian distribution, with the resulting systematic uncertainties
quoted in Tab. 7.14.
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Figure 7.18: Plot of the difference in theΣb fit parameters when fitting
with the default fit versus a fit where the number ofΛ0

b hadronization
events has been increased by 45 events. The distributions are modeled
by a Gaussian distribution, with the resulting systematic uncertainties
quoted in Tab. 7.14.
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Figure 7.19: Plot of the difference in theΣb fit parameters when using an
alternate parameterization, the RooFitD∗−D0 PDF, of theΛ0

b hadroniza-
tion background. The distributions are modeled by a Gaussian distribu-
tion, with the resulting systematic uncertainties quoted in Tab. 7.15.
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Figure 7.20: Plot of the difference in theΣb fit parameters when using
a systematically reweighted down parameterization of theΛ0

b hadroniza-
tion background. The distributions are modeled by a Gaussian distribu-
tion, with the resulting systematic uncertainties quoted in Tab. 7.16.
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Figure 7.21: Plot of the difference in theΣb fit parameters when using
a systematically reweighted up parameterization of theΛ0

b hadronization
background. The distributions are modeled by a Gaussian distribution,
with the resulting systematic uncertainties quoted in Tab.7.16.
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Σb Detector Resolution

The detector resolution is modeled by a double Gaussian distribution taken from the

PYTHIA Σb Monte Carlo sample, as described in Sec. 6.1.5. As in theB∗∗ analysis, we

expect the Monte Carlo may slightly underestimate the detector resolution. We account

for this systematic by generating Toy Monte Carlo samples with the detector resolution

widths increased by 20% toσnarrow = 1.4 MeV/c2 andσwide = 3.6 MeV/c2. The effects

on the floating parameters are shown in Fig. 7.22. The systematic shifts are summarized in

Tab. 7.17. The effect of this systematic is very small.

Σb Intrinsic Width

The intrinsic width of eachΣb peak is calculated from its meanQ value using Eq. (2.7).

This equation depends on a parametergA; from the fit to theΣ++
c width (Fig. 2.6), this

parameter is measured to begA = 0.75±0.05.

To incorporate the uncertainty ongA, we substitute the 1σ values (gA = 0.70 andgA =

0.80) into the natural width equation and generate Toy MonteCarlo samples from this pa-

rameterization of theΣb intrinsic widths. The resulting systematic distributionsare shown

in Fig. 7.23 forgA = 0.70 and Fig. 7.24 forgA = 0.80. The mean values are given in

Tab. 7.18 for both cases. For every parameter, we see that thesystematic shift changes sign

when the value ofgA changes from low to high, as expected. The uncertainties arevirtually

symmetric for all parameters as well.
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Table 7.17: Table of systematic uncertainties as a result ofincreasing the
widths of the double Gaussian detector resolution model by 20%. The
systematic uncertainty on each parameter is computed as theGaussian
mean value of the difference between the default and modifiedfit param-
eters for 500 Toy Monte Carlo samples.

Parameter Systematic Shift

Σ−b Q (MeV/c2) −0.011±0.002

Σ−b events 0.34±0.01

Σ+
b Q (MeV/c2) −0.014±0.003

Σ+
b events 0.25±0.01

Σ∗−b events 0.08±0.01

Σ∗+b events 0.21±0.01

Σ∗b−Σb Q (MeV/c2) 0.016±0.003

Σ∗−b Q (MeV/c2) 0.003±0.002

Σ∗+b Q (MeV/c2) 0.001±0.002
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Figure 7.22: Plot of the difference in theΣb fit parameters as a result of
increasing the widths of the double Gaussian detector resolution model
by 20%. The distributions are modeled by a Gaussian distribution, with
the resulting systematic uncertainties quoted in Tab. 7.17.

258



Table 7.18: Table of systematic uncertainties as a result ofuncertainty
in the parametergA used in the calculation of theΣb intrinsic widths.
The systematic uncertainty on each parameter is computed asthe Gaus-
sian mean value of the difference between the default and modified fit
parameters for 500 Toy Monte Carlo samples.

Parameter gA = 0.70 gA = 0.80

Σ−b Q (MeV/c2) −0.005±0.004 0.009±0.005

Σ−b events −3.44±0.06 3.36±0.07

Σ+
b Q (MeV/c2) 0.012±0.004 −0.021±0.005

Σ+
b events −1.97±0.05 1.80±0.05

Σ∗−b events 1.65±0.04 −1.67±0.04

Σ∗+b events 0.82±0.03 −0.79±0.03

Σ∗b−Σb Q (MeV/c2) −0.074±0.004 0.072±0.004

Σ∗−b Q (MeV/c2) −0.073±0.004 0.082±0.005

Σ∗+b Q (MeV/c2) −0.064±0.003 0.053±0.003
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Figure 7.23: Plot of the difference in theΣb fit parameters as a result
of settinggA = 0.70 in the calculation of theΣb intrinsic widths. The
distributions are modeled by a Gaussian distribution, withthe resulting
systematic uncertainties quoted in Tab. 7.18.
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Figure 7.24: Plot of the difference in theΣb fit parameters as a result
of settinggA = 0.80 in the calculation of theΣb intrinsic widths. The
distributions are modeled by a Gaussian distribution, withthe resulting
systematic uncertainties quoted in Tab. 7.18.

261



Σ∗b−Σb Mass Difference

Due to isospin splitting, the mass differencesm(Σ∗+b )−m(Σ+
b ) ≡ ∆∗+ andm(Σ∗−b )−

m(Σ−b ) ≡ ∆∗− are not expected to have the same value, as shown in Sec. 2.5. However,

because of the low statistics in our sample we constrain these mass differences to the same

value in the fit, namelym(Σ∗+b )−m(Σ+
b ) = m(Σ∗−b )−m(Σ−b )≡ ∆∗.

To estimate the systematic bias from this assumption, we usethe prediction∆∗+ =

∆∗−+(0.40±0.07) MeV/c2 [20]. Taking only the worst case prediction, where the dif-

ference between the values is at its largest, we set∆∗+ = ∆∗−+0.5 MeV/c2 and generate

Toy Monte Carlo samples for this configuration. The resultingsystematic shifts are shown

in Fig. 7.25 with the mean values given in Tab. 7.19. As expected, the shift is negligible

for the numbers ofΣb events, but does have a significant effect on theQ measurements,

particularly theΣ∗b−Σb Q value.

7.2.3 Σb Systematics Summary

Tab. 7.20 lists the value of all sources of systematic uncertainty on the measuredΣb Q

values, while Tab. 7.21 lists the systematic uncertaintieson the number of events for each

Σb state. The uncertainties in the positive and negative directions are accounted separately,

as some systematic shifts are asymmetric.
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Table 7.19: Table of systematic uncertainties as a result ofusing the same
mass difference (∆∗) for the positive (∆∗+) and negative (∆∗−) hyperfine
mass splittings. The systematic uncertainty on each parameter is com-
puted as the Gaussian mean value of the difference between the default
and modified fit parameters for 500 Toy Monte Carlo samples.

Parameter ∆∗+ = ∆∗−+0.5 MeV/c2

Σ−b Q (MeV/c2) 0.060±0.002

Σ−b events −0.084±0.006

Σ+
b Q (MeV/c2) −0.107±0.003

Σ+
b events −0.004±0.008

Σ∗−b events −0.16±0.01

Σ∗+b events 0.16±0.01

Σ∗b−Σb Q (MeV/c2) −0.260±0.004

Σ∗−b Q (MeV/c2) −0.184±0.003

Σ∗+b Q (MeV/c2) −0.390±0.003
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Figure 7.25: Plot of the difference in theΣb fit parameters when the posi-
tive mass difference,∆∗+, is shifted up from the negative mass difference,
∆∗−, by 0.5 MeV/c2. The distributions are modeled by a Gaussian dis-
tribution, with the resulting systematic uncertainties quoted in Tab. 7.19.
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Table 7.20: Summary of all systematic uncertainties on theΣb Q measure-
ments in MeV/c2. Positive and negative uncertainties for each systematic
source are shown separately. The final row shows the total systematic uncer-
tainty, which is the sum in quadrature of the individual contributions.

Systematic Σ−b Q Σ+
b Q Σ∗b−Σb Q Σ∗−b Q Σ∗+b Q

Mass Scale +0.22 +0.19 +0.10 +0.28 +0.32

−0.22 −0.19 −0.10 −0.28 −0.32

Λ0
b Sample Comp. +0.0 +0.03 +0.05 +0.02 +0.09

−0.03 0.0 0.0 0.0 0.0

Λ0
b Had. Normalization +0.009 +0.013 +0.14 +0.13 +0.12

−0.002 −0.013 −0.13 −0.13 −0.13

Λ0
b Had. Parameterization 0.0 +0.013 +0.04 +0.03 +0.05

−0.011 0.0 0.0 0.0 0.0

PYTHIA Reweighting +0.04 0.0 +0.32 +0.32 +0.17

−0.0004 −0.11 0.0 0.0 0.0

Detector Resolution 0.0 0.0 +0.02 +0.003 +0.001

−0.011 −0.014 0.0 0.0 0.0

Σb Intrinsic Width +0.009 +0.01 +0.07 +0.08 +0.05

−0.005 −0.02 −0.07 −0.07 −0.06

∆∗ Hyperfine Splitting +0.06 0.0 0.0 0.0 0.0

0.0 −0.11 −0.26 −0.18 −0.39

Total +0.23 +0.19 +0.38 +0.45 +0.40

−0.22 −0.25 −0.32 −0.37 −0.52
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Table 7.21: Summary of all systematic uncertainties on the number ofΣb

events. Positive and negative uncertainties for each systematic source are
shown separately. The final row shows the total systematic uncertainty,
which is the sum in quadrature of the individual contributions.

Systematic Σ−b events Σ+
b events Σ∗−b events Σ∗+b events

Λ0
b Sample Comp. +0.7 +3.3 +0.4 +7.3

0.0 0.0 0.0 0.0

Λ0
b Had. Normalization +2.2 +2.1 +4.8 +4.8

−2.2 −2.1 −4.7 −4.8

Λ0
b Had. Parameterization +0.3 +1.2 +0.3 +2.8

0.0 0.0 0.0 0.0

PYTHIA Reweighting +7.4 +2.3 +14.7 +4.6

0.0 −1.8 0.0 −2.9

Detector Resolution +0.3 +0.3 +0.1 +0.2

0.0 0.0 0.0 0.0

Σb Intrinsic Width +3.4 +1.8 +1.7 +0.8

−3.4 −2.0 −1.7 −0.8

∆∗ Hyperfine Splitting 0.0 0.0 0.0 +0.16

−0.08 −0.004 −0.16 0.0

Total +8.5 +5.0 +15.6 +10.3

−4.1 −3.4 −5.0 −5.7
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Chapter 8

Summary

8.1 Summary of theB∗∗ Measurement

Using two fully reconstructed decay modes,B+→ J/ψK+ andB+→ D̄0π+, in 370±20

pb−1 of data collected by the CDF II detector, we observe the two narrow B∗∗0 states and

measure their masses. The results of this study show

• m(B0
1)−m(B∗)−mπ = 269±3 (stat.)±2 (syst.) MeV/c2

• m(B∗02 )−m(B)−mπ = 319±5 (stat.)±1 (syst.) MeV/c2

The Q values are easily converted into absolute masses by adding the B or B∗ and

pion masses. There is a small uncertainty on the world average masses of theB andB∗

which must also be added to the systematic uncertainty of theabsolute mass values, but this

uncertainty is much less than the existing systematic erroron the analysis and has no effect.
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The world averageB+ andB∗ masses are 5279.1±0.4 MeV/c2 and 5325.1±0.5 MeV/c2

respectively [1], which results in absolute mass values of

• m(B0
1) = 5734±3 (stat.)±2 (syst.) MeV/c2

• m(B∗02 ) = 5738±5 (stat.)±1 (syst.) MeV/c2

This analysis is clearly statistically limited. AnotherB∗∗0 analysis is in the process of

being completed, using approximately 1.5 fb−1 of data with theB∗∗ candidates selected

by a neural network. Given this additional data, we intend tomeasure the narrowB∗∗

widths and the yield ofB+ mesons from the decay of the narrowB∗∗ states. With a more

advanced background model, it may also be possible to separate theB∗∗ wide states from

the background. However, this analysis is still in progressand results are not available at

this time. We also intend to search for theB∗∗± states, which will decay toB0π±. This will

be a more difficult measurement due to the mixing of theB0 andB̄0 mesons.

8.2 Summary of theΣb Measurement

We observe the fourΣ(∗)±
b states in about 1.1 fb−1 of data collected by the CDF II

detector. The widths predicted by Eq. (2.7) are in agreementwith our data. We measure

theQ values ofΣ−b andΣ+
b , and the averageΣ∗b−Σb mass splitting to be:

• m(Σ+
b )−m(Λ0

b)−mπ = 48.5+2.0
−2.2 (stat.)+0.2

−0.3 (syst.) MeV/c2

• m(Σ−b )−m(Λ0
b)−mπ = 55.9±1.0 (stat.)±2.0 (syst.) MeV/c2
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• m(Σ∗b)−m(Σb) = 21.2+2.0
−1.9 (stat.)+0.4

−0.3 (syst.) MeV/c2

As with B∗∗, to go fromQ values to absolute masses we must add theΛ0
b and pion

masses. Again, there is an uncertainty on the mass of theΛ0
b which must be added to the

systematic uncertainty on the measurement. Using the recent CDF II mass measurement of

m(Λ0
b) = 5619.7±1.2 (stat.)±1.2 (syst.) MeV/c2 [76], theΣ±b absolute mass values are

• m(Σ+
b ) = 5807.8+2.0

−2.2 (stat.)±1.7 (syst.) MeV/c2

• m(Σ−b ) = 5815.2±1.0 (stat.)±1.7 (syst.) MeV/c2

To quote the absolute masses forΣ∗±b , we have already calculated the systematic un-

certainties. The statistical uncertainties must also be calculated, taking into account the

correlations between theΣb and (Σ∗b−Σb) Q values. From the error matrix output of the

fit to data, the external error betweenΣ−b and (Σ∗b−Σb) is −4.213×10−7 GeV/c2, while

the error betweenΣ+
b and (Σ∗b−Σb) is−2.574×10−6 GeV/c2. Using this along with the

uncertainties on theQ values yields absolute mass values of:

• m(Σ∗+b ) = 5829.0+1.6
−1.8 (stat.)+1.7

−1.8 (syst.) MeV/c2

• m(Σ∗−b ) = 5836.4±2.0 (stat.)+1.8
−1.7 (syst.) MeV/c2

The number of events for each state are

• N(Σ+
b ) = 32+13

−12 (stat.)+5
−3 (syst.)

• N(Σ−b ) = 59+15
−14 (stat.)+9

−4 (syst.)

269



• N(Σ∗+b ) = 77+17
−16 (stat.)+10

−6 (syst.)

• N(Σ∗−b ) = 69+18
−17 (stat.)+16

−5 (syst.)

While the measurement of theΣb absolute mass values are limited by statistical uncer-

tainties and the systematic uncertainty on theΛ0
b mass equally, the measurement of theΣb

Q values is clearly statistically limited and will benefit greatly from the addition of more

data. Another analysis is in progress to increase the data sample used for this analysis by

loosening theΛ0
b selection criteria and adding new data.

8.3 Conclusions

We are interested in non-perturbative QCD effects because they have the potential to

obscure or confuse the effects in indirect searches for physics beyond the Standard Model.

The best means of studying these non-perturbative QCD effects is to investigate the in-

teractions of quarks bound in hadrons. Due to the symmetriesinvoked when the hadron

contains one heavy quark, QCD effects are most easily studiedby finding and measuring

as many heavy hadrons as possible. We then compare the measurements to the predictions

from a number of theoretical models.

Both theB∗∗0 andΣb measurements show good agreement with the theoretical predic-

tions based on heavy quark effective theories. The quantum numbers (I , J, andP) still

need confirmation for all of these states, which will requiremuch more data. It is en-

couraging that thus far the states have been found with the properties (such as mass and
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intrinsic width) that we expect. This shows us that the heavyquark effective theories are a

good approximation to QCD in the non-perturbative regime. However, at this point no one

theoretical model stands out as preferred for predicting the properties of heavy hadrons.

The study of heavy hadrons should continue in the future. With more data, it will be

possible to uncover more of theb baryon spectrum. The next likely candidates are theΞb
1

andΛ∗0b states. It is also important to improve measurements of the known members of

the spectrum – accurate measurements of the masses, widths,and lifetimes of each state,

confirming the quantum numbers, and measuring the polarization of theΣb states are only

a few possibilities.

1The discovery of theΞb at the CDF and DØ experiments was announced in June 2007 [77].
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Appendix A

Hadronic Two Displaced Track SVT

Trigger

The three separate trigger paths for the hadronic two displaced track SVT trigger are:

the nominal (B CHARM), the low pT (B CHARM LOWPT), and the highpT (B CHARM HIGHPT).

The trigger criteria for each path are described in detail inRef. [54], and summarized in the

following sections.

A.1 The B CHARM Trigger Path

This is the nominalb hadronic two displaced track SVT trigger (TTT). In order to

be used at high luminosities, it must be severely prescaled.At the highest luminosities

(> 250×1030 s−1 cm−2), the TTT path is not included in the trigger selection.
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Level-1

At L1, this trigger path looks for

• Two tracks with opposite charge

• 4 XFT hit layers for each track

• XFT pT > 2.04 GeV/c for each track

• Opening angle between the tracks of 0◦ < ∆φ0 < 135◦

• ScalarpT sum:ΣpT > 5.5 GeV/c

Level-2

At L2 the silicon SVT information is added. The requirementsare

• Two tracks with opposite charge

• SVT χ2 < 25

• SVT pT > 2 GeV/c for each track

• 120µm < |d0|< 1 mm for each track

• Opening angle between the tracks of 2◦ < ∆φ0 < 90◦

• ScalarpT sum:ΣpT > 5.5 GeV/c

• Lxy > 200µm
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Level-3

At L3, the SVT tracks are matched to COT tracks by requiring proximity in curvature

andφ0. The SVT measurement is used for the trackd0 with the other four track parameters

taken from the COT measurement. Pairs of these hybrid tracks are then subject to the

following requirements:

• Two tracks with opposite charge

• 120µm < |d0|< 1 mm for each track

• pT > 2 GeV/c for each track

• |η|< 1.2 for each track

• |∆z0|< 5 cm between the tracks

• Opening angle 2◦ < ∆φ0 < 90◦

• ScalarpT sum:ΣpT > 5.5 GeV/c

• Lxy > 200µm

A.2 The B CHARM LOWPT Trigger Path

TheB CHARM LOWPT trigger path is designed to complement theB CHARM trigger path

by filling the trigger bandwidth at low luminosities. The requirements are similar but not
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quite as strict; for example, the tracks are not required to have opposite charge and no

requirement is made on the scalar sumpT of the two tracks.

Level-1

The requirements at L1 are

• Two tracks

• 4 XFT hit layers for each track

• XFT pT > 2.04 GeV/c for each track

• Opening angle∆φ0 < 90◦

Level-2

The requirements at L2 are

• Two tracks

• SVT χ2 < 25

• SVT pT > 2 GeV/c for each track

• 120µm < |d0|< 1 mm for each track

• Opening angle∆φ0 < 90◦

• Lxy > 200µm

275



Level-3

The requirements at L3 are

• Two COT tracks matched to SVT tracks

• 120µm < |d0|< 1 mm for each track

• pT > 2 GeV/c for each track

• |∆z0|< 5 cm between the tracks

• Opening angle 2◦ < ∆φ0 < 90◦

• ScalarpT sum:ΣpT > 4.0 GeV/c

A.3 The B CHARM HIGHPT Trigger Path

TheB CHARM HIGHPT trigger path was originally added as a lower rate TTT path which

did not need to be prescaled at higher luminosities. However, even this trigger cannot be

included at the highest luminosity running. The requirements are similar to theB CHARM

but with higherpT and scalar sumpT requirements to lower the rate.

Level-1

The requirements at L1 are

• Two tracks with opposite charge
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• 4 XFT hit layers for each track

• XFT pT > 2.46 GeV/c for each track

• Opening angle∆φ0 < 135◦

• ScalarpT sum:ΣpT > 6.5 GeV/c

Level-2

The requirements at L2 are

• Two tracks with opposite charge

• SVT χ2 < 25

• SVT pT > 2.5 GeV/c for each track

• 120µm < |d0|< 1 mm for each track

• Opening angle 2◦ < ∆φ0 < 90◦

• ScalarpT sum:ΣpT > 6.5 GeV/c

• Lxy > 200µm

Level-3

The requirements at L3 are

• Two tracks with opposite charge
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• 120µm < |d0|< 1 mm for each track

• pT > 2 GeV/c for each track

• |η|< 1.2 for each track

• |∆z0|< 5 cm between the tracks

• Opening angle 2◦ < ∆φ0 < 90◦

• ScalarpT sum:ΣpT > 5.5 GeV/c

• Lxy > 200µm
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Appendix B

Analysis Quality Requirements

B.1 Default Track Selection

The defTracks requirements are made on all tracks used in these analyses; tracks

which pass these requirements are considered to be of good quality. Tracks which fail the

more stringent cuts are demoted to the next lower class and retested.

• COT and silicon tracking (OIZ):

- COT requirements:

1. Two or more axial superlayers (SL) with 5 or more hits each

2. Two or more stereo SL with 5 or more hits each

3. If (1) and (2) are not satisified, track will still be accepted if there are two

axial SL and one stereo SL with 5 or more hits, as long as the track exits

the COT in thez direction before the last wire layer.
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- Silicon requirements:

1. Three or more siliconrφ hits if COT requirements are met

2. If COT requirements are not met, track must have five or more silicon rφ

hits to be accepted

3. One or more axial silicon hits and one or more 90◦ silicon hits

4. If (3) is not satisifed, track is accepted if it has three ormore 90◦ silicon

hits

- z0 error less than 0.05 cm

• COT stand-alone tracking:

- Same COT requirements as OIZ

- One or more axial silicon hits

- z0 error less than 0.5 cm

• Outside-in tracking:

- Same COT and axial silicon requirements as OIZ

- d0 error less than 0.05 cm

• Inside-out tracking:

- COT requirements:

1. Two or more axial SL with 5 or more hits each
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2. Two or more stereo SL with 5 or more hits each

3. If (1) and (2) are not satisified, track will still be accepted if it has 5 or

more axial COT hits and 2 or more stereo COT hits, as long as the track

exits the COT in thezdirection before the last wire layer.

- Duplicate COT tracks are detected and removed

• COT only tracking:

- Same COT requirements as for OIZ

- χ2 per degree of freedom is less than 10

• Silicon only tracking:

- If track passes through the forward region of the detector,it must have 5 or

more axial silicon hits

- If track passes through the central region of the detector,it must have 4 or more

axial silicon hits

- Track does not traverse the entire COT volume (otherwise it should have fallen

under the Outside-in category)

B.2 Good Run Criteria

The definition of a “good run” has been set for various physicsanalysis by the CDF

II Data Quality Management group. For each data run, the goodrun bits are set true or
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false by the shift crew or in offline analysis, and are saved toa database. Most of the good

run bits are set by a shift crew member called the Consumer Operator (CO) whose job is

to monitor the online data quality plots. Forb physics, the following good run bits are

required to be true:

• RUNCONTROL STATUS: The Run Control software starts and stops the data taking run.

This bit is automatically set to true by Run Control if a run lasts long enough for 100

million collisions, 10,000 Level-1 accepts, 1,000 Level-2accepts, and at least 1 nb−1

of integrated luminosity.

• SHIFTCREW STATUS: This bit is filled by the shift crew member operating the Run

Control software at the end of every run.

• CLC STATUS: This bit is set to true by the CO if the online data quality plots of

luminosity and beam conditions are normal.

• L1T STATUS andL2T STATUS are set to true by the CO after verifying that the Trigger

Monitoring plots are normal.

• L3T STATUS is set to true if the L3 SVX II reformatter error is less than 1%.

• COT ONLINE bit is set to true by the CO if the COT high voltage was on for the entire

run and the COT Monitoring plots look normal.COT OFFLINE status is determined

after the data has been examined offline by experts. The criteria for setting it true

is that there were fewer than 1% of bad COT channels during the run and that the

integrated luminosity was at least 10 nb−1 .
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• SVX ONLINE bit is set to true by the CO if the SVX II high voltage was on for the

entire run and the SVX II Monitoring plots look normal.SVX OFFLINE status is

determined after the data has been examined offline by experts. The criteria for

setting it true is that theD0 andD∗+ yields are within the expected ranges. These

particles decay at secondary vertices and thus will fire the TTT, and are produced at

a high enough rate to give meaningful statistics for any goodrun.

• CMU OFFLINE bit is set to true by the CO if the CMU high voltage was on for the entire

run and the CMU Monitoring plots look normal.CMU OFFLINE status is determined

after the data has been examined offline by experts. The criteria for setting it true is

that the CMU occupancy looks normal.

• SVT ONLINE bit is set to true by the CO if the SVT Monitoring plots look normal.

SVT OFFLINE status is determined after the data has been examined offlineby ex-

perts. The criteria for setting it true is that the online beam position subtraction was

done correctly and the SVT occupancy looks normal.

• CAL ONLINE bit is set to true by the CO if all the electromagnetic and hadronic

calorimeter high voltages were on for the entire run and the associated monitoring

plots all look normal.CAL OFFLINE status is determined after the data has been ex-

amined offline by experts. The criteria for setting it true isthat the occupancy looks

normal.
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