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Abstract

This thesis presents evidence for Bi&° andzé*)i hadrons in proton-antiproton colli-
sions at a center of mass energy @@ TeV, using data collected by the Collider Detector
at Fermilab.

In the search foB**? — B* 1", two B* decay modes are reconstruct&d: — J/PK*,
wherel /Y — pu—, andB+ — DOret, whereD® — K*1t7. Both modes are reconstructed
using 370t 20 pb ! of data. Combining th&* meson with a charged pion to reconstruct
B0 led to the observation and measurement of the masses of theamowB**? states,

BY andB3?, of
m(BY) = 5734+ 3 (stat.)+2 (syst.) MeV/é

m(B;Y) = 5738+ 5 (stat.)+£1 (syst.) MeV/é

In the search foE{"* — Alret, theAQ is reconstructed in the decay motig— A¢ T,

whereA; — pK~ 1", using 1070t 60 pb ! of data. Upon combining tha? candidate
with a charged pion, all four of thﬁlg*)i states are observed and their masses measured to

be:



m(%,) = 5807839 (stat.)+ 1.7 (syst.) MeV/c?
m(Z,) = 581524 1.0 (stat. )t 1.7 (syst.) MeV/c?
m(Z; ") = 58290118 (stat.) £ (syst.) MeV/c?
m(Z} ") = 58364+ 2.0 (stat.y 18 (syst.) MeV/c?

This is the first observation of tiﬁg*)i baryons.
Author: Jennifer M. Pursley

Adviser: Dr. Petar Maksimow



Acknowledgements

First of all, | thank my parents, along with my sister Deboaaidl my brother Patrick,
for their love, support, and encouragement. Even if theyr'didnderstand what | was
doing or why, they never questioned my ability to succeedly @iith their help could |
have ever made it this far.

| owe a debt of gratitude to my advisor, Prof. Petar Maksiraowver the past five
years, he has taught me much about topics ranging from progiag to silicon DAQ to
physics analysis. His supervision made it possible for miniesh a wonderful analysis
while successfully navigating the procedures and poldias large collaboration. | always
appreciate his enthusiasm and excitement over the amappgrtonities we have in the
present day for new discoveries.

| would also like to thank the rest of the Johns Hopkins facaltd staff, especially
within the experimental high energy physics group. In gattr, | appreciate the advice
and guidance of Profs. Bruce Barnett and Barry Blumenfeld. | o atry grateful for
the help | had through the years from Bonnie Bosley and LonnigkQleho always made

sure my paychecks and reimbursements arrived. Indeedkgharall the department staff



who kept me in touch with Hopkins events, especially Conniegéel and Carm King, who
were my primary contacts after | moved out to Fermilab. A Ibigrnks goes out to all the
students at Hopkins for providing a moral support which ldnaissed dearly since moving
out to Fermilab, particularly the students from my own yeaowuffered through classes
and exams right alongside me.

This thesis would not have been possible without the hardt wbmany people at Fer-
milab, including all the staff and scientists who kept theederator and the CDF |l detector
achieving higher and higher goals for the past five yearsreTéwe many individuals at Fer-
milab who helped me through my time there, so many that | cepossible hope to name
them all. | am particularly indebted to Dr. Matthew Herndaho answered countless
guestions and taught me many basic analysis skills. | thanlRbb Napora, who led me
through my early years at CDF and introduced me to silicon p@upplies. | also thank
Reid Mumford for his assistance with power supplies, hislumsfale work on thd\g mass
fit, and in general for his upbeat enthusiasm. And | thank aty&it Behari for his as-
sistance and for assuming partial responsibility for the/grosupplies, which allowed me
the time to finish this thesis. | must also acknowledge andkifal of the silicon group
members, particularly Marcel Stanitzki, who lost time egleand sanity helping me keep
the power supplies working.

And last but certainly not least, | thank my dearest Wesleyhfs love, support, and

unending patience with me during this crazy time.



Contents

Abstract i
Acknowledgements v
List of Tables IX
List of Figures Xil

1 Introduction 1
1.1 Historical Background of Particle Physics . . . . ... .. ....... 1
1.2 High Energy Physicsinthe 21stCentury . . . . .. ... .......... b5

1.3 OutlineofthisThesis . . . . . . ... . ... .. .. . .. ... .. .... 7
2 Theoretical Motivation 8
2.1 The Standard Model of Particle Physics . . ... .............. 8
2.1.1 The Fundamental Particles . . . . . . ... ... ... ... .... 9
2.1.2 Particle Interactions . . . .. ... ... oo 11
2.2 Quantum Chromodynamics . . . . . . . . . . . . .. . ... . 17
2.2.1 Heavy Quark Effective Theory . . . . . ... ... ... ..... 81
2.3 Production obb PairsinappCollider . . . . . .. ... ... ... .... 21
2.3.1 TopologyofdbEvent. . . ... ... ... ... ......... 24
2.4 Theoretical Predictions f@° . . . ... ... ... ... ... ..... 26
2.4.1 ContributionoB:® . . . ... 30
2.5 Theoretical Predictions fa, ™™~ . . . . .. ... L. 32
3 Experimental Apparatus 39
3.1 TheTevatron . . . . . . . . . . . . . e 39
3.2 The Collider DetectoratFermilab . . . . ... ... ... .. ..... 42
3.2.1 Detector Apparatus . . . . . . . . ... 44
3.2.2 Trigger Systems . . . ... 56

Vi



4 Data and Monte Carlo Samples 63
4.1 DataReconstruction. . . . . . . . . . . . . ... 3 6
4.1.1 TriggerPaths . . . . . .. . ... . 63
4.1.2 Offline Track Reconstruction . . . . .. ... ... ........ 56
413 TrackRefitting . . . . . ... ... 67
4.1.4 TheUniversalFinder . . . . . ... . . ... .. . ... . ..... 68
4.2 Monte Carlo Generation . . . . .. .. ... ... ... ... 69
43 B™ DataSamples . . . . . . . . . e 70
4.3.1 Reconstruction®* — J/YK* . . .. ... 71
4.3.2 Reconstructon®* —DOre" . . . .. ... 74
44 B*MonteCarloSamples. . . .. ... .. .. ... ... ... ... . 80
45 ZyDataSample . . . . . . . ... e 86
46 ZpMonteCarloSamples . . . . .. ... . ... .. ... 93
4.6.1 Datato Monte CarloComparisons . . . . ... ... ........ 95
5 B*0 Measurement 102
5.1 Analysis Methodology . . . .. . ... ... .. .. ... .. ... ... 21
5.1.1 B*™ Reconstruction . . . . . ... ... ... .. ... .. 102
5.1.2 B*™Backgrounds . .. .. ... .. ... ... 104
5.1.3 Mass Resolutionof HighTracks . . . . . ... ... ....... 110
5.1.4 B*™ FitDescription . . . . . . . . . .. .. .. .. 114
515 Testsofth®*“Fit . . ... ... ... ... ... ......... 123
5.2 Resultofthd™ FittoData . . .. ... ... .. .. ... ........ 127
5.2.1 AlternativeB** Signal Fits . . . . . . . .. . ... ... ... ... 131
5.2.2 Wrong SigB*™ Fits . . . . . . . .. ... .. 135
5.2.3 ThreeBodB** Decays . .. ... .. ... . ... 135
6 =p*)* Measurement 137
6.1 Analysis Methodology . . .. .. ... .. .. .. ... ... .. ..., 371
6.1.1 2pReconstruction . ... ... ... ... ... .. .. ... ... 138
6.1.2 Optimization ok, Selection Criteria . . . . . .. ... ... ... 138
6.1.3 ZpBackgrounds . ... .. .. ... ... ... 150
6.1.4 Systematic Evaluation of tiker THIA /\8 Track Reweighting . . . . 159
6.1.5 ZpFitDescription . .. . .. ... . ... .. ... . 166
6.1.6 Testsofth&,Fit. . . . .. ... ... .. .. ... ........ 168
6.2 Resultofthey FittoData . . . . . . ... . ... ... ... . ...... 177
6.2.1 Evaluating th&, Signal Significance . . . . ... ... ... ... 177
6.2.2 ZpFitResult . ... ... .. ... ... .. 193
6.2.3 Alternativexy Signal Fits . . . . . . . .. ... .. L. 199
6.2.4 Likelihood Scans of the, Parameters . . . . . .. ... ... ... 207

Vil



7 Systematic Error Analysis
7.1 B*™ SystematicErrors . . . . . . ... ...

7.1.1 B** Mass Scale Systematics . . ... .. ... .........

7.1.2 B* FitSystematics . . . . ... .. ... .. ... ..
7.1.3 B* Systematics Summary . . . . ... ...
7.2 ZpSystematicErrors . . . ...

7.2.1 ZpMass Scale Systematics . . . . ... ... ... .......

7.2.2 ZpFitSystematics . ... ... .. .. .. .. ... o0
7.2.3 ZpSystematicsSummary . . . . . .. ... o000

8 Summary
8.1 Summary of th&" Measurement . . . . ... ... .. ........
8.2 Summary of th&y Measurement . . . . . . ... ... ... ......
8.3 Conclusions . . . . . . ...

A Hadronic Two Displaced Track SVT Trigger
A.1l TheB.CHARMTriggerPath . . . ... ... ... .. ... .......

A.2 TheB.CHARMLOWPT TriggerPath . . . . ... .. ... ... .......
A.3 TheB.CHARMH GHPT TriggerPath . . . . . ... .. ... ... .....

B Analysis Quality Requirements
B.1 Default Track Selection . . . . . . . . . . . . . . . . ... .
B.2 GoodRunCriteria. . . . . . . . . .

Bibliography

Vita

viii



List of Tables

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

6.1
6.2

The fundamental fermions . . . . . . . . ... ... L 12
Quark content of mesons used inthistext . .. ... ..... ... . 13
Quark content of baryons used inthistext . . .. ... ... ........ 14
Standard Model force carriers . . . . . . ... ... ... 15
Propertiesof thB** states . . . . . . .. .. ... ... ... ....... 27
Predictions for the masses of the f&if states . . . . . ... ... .. .. 28
Predictions for the intrinsic widths of the narr@# states . . . . . . . .. 28
Predictions for the masses of vhgandzb baryons . . . ... .. ... .. 37
Predictions of th&;, isospin mass splittings . . . . . .. ... ... .. .. 38
Selection criteria foB* — J/WK™ (J/Y — pu~) reconstruction . . . . . 73
Results of th8" — J/QYK™ invariantmassfits . . . ... ......... 75
Selection criteria foB™ — DOt (D® — K*7tF) reconstruction . . . . . . 78
Results of th&" — DOt invariant massfits . . . ... .......... 81
Input parameters for tH&* PYTHIA Monte Carlosample . . . . . . . . .. 82
PreliminaryA\{ — pK™Tt" selectioncriteria . . . . . ... ... ... ... 87
Selection criteria foAQ reconstruction . . . .. ... 91
Functional forms used to reweight theTHIA /\g Monte Carlo sample . . . 97
Selection criteriafoB** pions . . . . . .. ... .. Lo oL 103
B** mass resolution for high versus loytracks . . . . . . . ... ... .. 111
Parameter values for tB* detector resolution . . . . .. .. .. ... .. 116
Parameter values for tB$* modeled by a double Gaussian distribution . . 121
Parameter values for a fit to ﬁ(!;‘) states in the@YTHIA sample . . . . . . 121
Result of thé8** signal fittodata. . . . . .. ... ... ... ....... 127
Fit bias corrections for th®* mass measurements . . . . . ... .. ... 128
Result of thé8** mass fit without separating combinatorial background . . 132
Selection criteria fo¥, reconstruction . . . . . . ... L. L. 142
Summary of the generic Monte Cablg background studies . . . . . . .. 150



6.3
6.4
6.5
6.6
6.7

6.8

6.9

6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15
7.16
7.17

Functional form of th&, combinatorial background . . . . . . . ... .. 153
Functional form of th&, B meson background . . . . ... ... ..... 155
Functional form of th&y, AQ hadronization background . . . . . . ... .. 156
Functional forms of alternate reweightings of lkﬁaMonte Carlo sample . 160
Alternate parameterizations of th@ hadronizationQ distribution from
reweighting the’\g MonteCarlo . ... .. ... ... ... ........ 163
Parameter values for thg detector resolution. . . . . . ... . ... ... 167
Input parameters used to test lpfit model . . . . ... ... L. 170
Pulls on th&y, fit parameters using parabolicerrors . . . . .. ... .. .. 170
Pulls on th&y, fit parameters using asymmetricerrors . . . . . . . . .. .. 171
Estimation of fit bias on thg, fit parameters . . . . . . . ... ... ... 171
Parameter values for thg detector resolution likelihood constraints . . . . 181
Likelihood ratiop-values for alternat&y, signal hypotheses . . . . . . . .. 184
Parameter values for a fit to the null hypothesis likaddhdistribution . . . 187
Results for th&y, signal fittodata . . . . . ... ... .. ... ...... 194
Correlation matrix for thgy, signal fittodata . . . . . ... ... ... .. 194
Fit values for likelihood constraints irbg signal fittodata . . . . . . . . . 195
Results for & signal fit to data with likelihood constraints . . . . . . . .. 196
Fit toZy, data with the\D hadronization normalization floating . . . . . . . 200
Alternate parameterization of m@ hadronization background . . . . . . . 202
Fit toX, data using an alternatlsg hadronization parameterization . . . . . 203
Fit toZy, data with the’\g hadronization systematically reweighted down . . 205
Fit toZy data with the\; hadronization systematically reweightedup . . . 206
Fit toZ;, data with the’\§ hadronization shape allowed to float . . . . . .. 208
Mass scale systematic uncertainties inBhemeasurement . . . . . . . .. 212
Systematic uncertainties from tB& detector resolution model . . . . . . 214
Systematic uncertainties from underestimation oBthiedetector resolution 216
Systematic uncertainties on the parameterizatione®thbackground shape219
Systematic uncertainties on the parameterizationeoh#mrowB** widths . 223
Systematic uncertainties on tBgbranching fractions (1) . . . . . . . . .. 227
Systematic uncertainties on tBgbranching fractions (2) . . . . . . .. .. 229
Systematic uncertainties on the energy of the photon Bodecay . . . . 232
Systematic uncertainties on the parameterizationedB{hcomponent . . . 234
Systematic uncertainties on the normalization oBffecomponent . . . . 236
Summary of all systematic uncertainties onBhemass measurement . . . 237
Mass scale systematic uncertainties irctheneasurement . . . . . . . .. 239
Systematic uncertainties from thg sample composition . . . . . . . . .. 243
Systematic uncertainties from thg hadronization normalization . . . . . 248
Systematic uncertainties from an alternate modeleyt\ﬂhadronization . 249
Systematic uncertainties from alternate reweigbt'cnfghe/\g hadronization 250
Systematic uncertainties from underestimation obthdetector resolution 257



7.18 Systematic uncertainties from calculation of Igentrinsic widths . . . . . 259

7.19 Systematic uncertainties from using an avebage- >, mass splitting . . . 263
7.20 Summary of all systematic uncertainties onIpenass measurements . . . 265
7.21 Summary of all systematic uncertainties on the numbfexg events . . . . 266

Xi



List

2.1
2.2
2.3
2.4
2.5
2.6

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

4.1
4.2
4.3

of Figures

Leading ordebb_production methods . .. ...........

Next-to-leading ordebg_production methods . . ... .. ...

Topology of a typicabb event in app collision . . . .. ... ..

Predicted spectrum of the lowest lyiBgneson states . . . . . .
Baryon multiplets witd? = 3" anddP =3" ... ... ... ..
Intrinsic widths of th&. andZybaryons . . . . . . .. ... ..

Diagram of the Tevatron colliderchain . . . . . .. .. ... ......

Cross-sectional view of the CDF Il detector . . . . .

Cutaway view of one quadrant of the CDF Il tracking systems . .. . . .
End and side views of the CDF |l silicon detector . . . . . . ...... ..

End view of the LOO silicon detector . . . . . . ... .. ...

Nominal cell layout for the CDF Il wire drift chamber . . . .... . . . ..
Half cross-section of the CDF Il end plug calorimeter . ...... . . . ..

Detail of the CDF Il muon detector configuration

Block diagram of the CDF Il trigger system . . . . . .. .. ... ...
Architecture of the Silicon Vertex Tracker system . . ..... ... .. ..

B* — J/YK™ invariant mass spectrum . . . . . ... ... ..
Bt — DOt invariant mass spectrum . . . . .. ... ... ..
Data to Monte Carlo comparison of tBepr spectrum . . . . .

4.4 N — A{TU invariant mass spectrum . ... L L.

4.5
4.6
4.7
4.8
4.9
4.10
411
412

ReconstructeB® candidates in tha2 sample . . . . . ... ..
Data to Monte Carlo comparison of thg pt spectrum . . . . .

Data to Monte Carlo comparison of the trggkspectrum . . . .
Data to Monte Carlo comparison of the trgek' spectrum . . .
Data to Monte Carlo comparison of the trq]{ﬁ spectrum . . . .

Data to Monte Carlo comparison/ between the track anti®
Data to Monte Carlo comparison&uff between the track anti;
Data to Monte Carlo comparison of t,hgrr Q distribution . . .

Xli



4.13

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20

Data to Monte Carlo comparison of 1‘1’\%11+ Qdistribution . . . ... .. 101
Binned fit toB* — J/YK™ mass sideband tracks . . . .. ... ... ... 107
Binned fit to initialB™ — DOt mass sideband tracks . . . . . ... .. .. 108
Binned fit to finaB* — DOrtt mass sideband tracks . . . . ... ... .. 109
B mass resolution for kaons at high versuslpw. . . . . . .. ... ... 112
Detector resolution iB; — Brtfor tracks at high versus lowy . . . . . . . 112
Detector resolution iB; — B*mtfor tracks at high versus lowy. . . . . . . 113
Smearing of th&"* mass resolution due to the lost photorBindecays . . 114
Detector resolution in th&* Q distribution . . . . . ... .. ... .. .. 117
Fit to theB{* signal from aPYTHIA Monte Carlosample . . . . . ... .. 122
Fitto theBE";‘) signal from aPYTHIA Monte Carlosample . . . . .. .. .. 122
Pulls on alB** fit parameters except ti&* masses . . . . . .. ... ... 125
Pulls on th®&** mass fit parameters . . . . . . . ... ... ... ..... 126
Difference between measured and true valueBfomass parameters . . . 126
Pulls orB** mass fit parameters after applying fit bias corrections . . 126
Unbinned fit to combinatorial backgrounds in the lowifyu8** sample . . 128
Unbinned fit taQ distributions in the low purityg** sample . . . . . . . .. 128
Unbinned fit to combinatorial backgrounds in the hightpB** sample . . 129
Unbinned fit tdQ distributions in the high purit$3** sample . . . . . . .. 129
Unbinned fit taQ distributions in the high purit** sample (reduced range) 129

Unbinned fit taQ distributions in the high purity3** sample (larger bins) . 130

5.21 Unbinned fit taQ distributions in the low purityB** sample without back-

groundseparation . . . . . . ... e e 133
5.22 Unbinned fit t&Q distributions in the high purit$3** sample without back-

ground separation . . . . . ... 133
5.23 BinnedB; only fit to Q distributions in the high puritg** sample . . . . . 134
5.24 Binned background only fit €@ distributions in the high purity3** sample 134
5.25 BinnedB** fit to tracks with the wrong charge correlation . . . . . . . .. 513
5.26 BinnedB** fit to reconstructed three bod/** decays . . . ... ... .. 136
6.1 Topology of &y eventinthe CDF lldetector . . . . ... ......... 139
6.2 /\grr and/\grﬁ Q distributions before applying optimized cuts . . . . . .. 143
6.3 Thepr(Ts,) spectrum in @YTHIA 3, Monte Carlo sample . . . . . . . .. 144
6.4 Distribution of|dy/0q,| of the s, candidates from the upp&p, sideband . 145
6.5 TheN—1"scanofthecutomr(Zp) . . . . .. ... ... ........ 146
6.6 The ‘N —1"scan of the cut ofdg/0g,| of theTts, candidates . . . . . . . . 147
6.7 The'N—1"scan of the cut on cd¥ of thers, candidates . . . . . . . .. 148
6.8 /\grr and/\gn+ Q distributions after applying optimized cuts . . . . . . . . 149
6.9 Aprt andAgmtt Q distributions for the generic Monte Carlo samples . . . . 151
6.10 Functional form of th&, combinatorial background . . . . . ... .. .. 152
6.11 Functional form of th&, B meson background . . . . . .. .. ... ... 154

Xiil



6.12
6.13
6.14
6.15
6.16

6.17

6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27
6.28
6.29
6.30
6.31
6.32
6.33
6.34
6.35
6.36
6.37

7.1
7.2
7.3
7.4
7.5
7.6

7.7
7.8

7.9

7.10

Functional form of th&y, /\8 hadronization background . . . . . .. .. .. 157
Sum of alky background components . . . . .. .. ... 158
Functions used to reweight the Monte Carlo with@aslystematic variation 161

Functions used to reweight the Monte Carlo with@as¥stematic variation 162
Alternate parameterizations of th«% hadronization background due to
reweighting the Monte Carlobyd . . . .. ... ... ... ....... 164
Alternate parameterizations of tmg hadronization background due to
reweighting the Monte Carloby@ . . . .. ... ... ... ....... 165
Detector resolution for tig, Q distributions . . . . . ... .. ... ... 168
Predictedy signal structure used to test the fitmodel . . . . . .. ... .. 172
Plot of a Monte Carlo sample generated to teskfig model . . . . . . . 173
Pulls on th&y, fit parameters using parabolicerrors . . . . . .. ... ... 174
Pulls on th&y, fit parameters using asymmetricerrors . . . . . . . . . . .. 175
Differences between measured and true valueg,fbt parameters . . . . 176
Distribution of excess events over background irtihsubsamples . . . . 188
Likelihood constraints from the detector resolutiangmeters . . . . . . . 189
Alternate signal fitstothg,data . . . . .. ... ... ... ....... 189
Distribution ofx? for Monte Carlo samples generated witgsignal . . . . 190
Likelihood distribution for the null hypothesig model . . . . . . . . . .. 190
Likelihood distribution for the tw@y statesmodel . . . . ... ... ... 191
Likelihood distributions for the threg, statesmodels . . . . . . .. .. .. 192
Plot of thexy signal fittodata . . . .. .. .. ... ... ......... 197
Plot of thexy, signal fit to data (reducedrange) . . . . . . . ... ... ... 198
21 signal fit with the/\g hadronization normalization floating . . . . . . . . 201
Alternate parameterization of m@ hadronization background . . . . . . . 204
>}, signal fit to data using alternaﬁg hadronization parameterizations . . . 207
>y, signal fits to data with b reweightings of the!\B hadronization . . . . . 209
Likelihood scans for the, parameters . . . . . . ... .. .. ... .... 210
Systematic uncertainties from tB& detector resolution model . . . . .. 215

Systematic uncertainties from underestimation oBHedetector resolution 216
Systematic uncertainties from an alterrBitebackground parameterization 218

Systematic uncertainties from tB& background normalization . . . . . . 220
Systematic uncertainties from varying 8 intrinsic width . . . . . . .. 222
Systematic uncertainties from varying tB& intrinsic width and using
different widths foByandB; . . . .. ... .... ... ......... 224
Systematic uncertainties from varying Bigbranching fraction . . . . . . 226
Systematic uncertainties from varying 8% branching fraction and de-
creasing the fractiond®, . ... ...................... 228
Systematic uncertainties from varying g branching fraction and in-
creasing the fractiond®; . . ... ..................... 230
Systematic uncertainties from varying the photonggnerB* decay . . . . 233

Xiv



7.11 Systematic uncertainties from varying Bi¢ parameterization . . . . . . . 235

7.12 Systematic uncertainties from the normalization efBfi component . . . 236
7.13 Mass scale systematic uncertainties indtheneasurement . . . . . . . . . 240
7.14 Systematic uncertainties on themeasurement from thﬁg sample com-

position (100 eventshift) . . . . ... . ... ... 442
7.15 Systematic uncertainties on themeasurement from th&2 sample com-

position (200 eventshift) . . . . . .. .. ... .. ... L. 452
7.16 Systematic uncertainties on thgmeasurement from th@g sample com-

position (400 eventshift) . . . . .. ... ... ... ... L. 462
7.17 Systematic uncertainties from decreasing the nurrfoeg bdadronization

BVENTS . . . . e e e 251
7.18 Systematic uncertainties from increasing the numbéiﬁmadronization

BVENIS . . . . . 252

7.19 Systematic uncertainties from an alternate modelef\frhadronization . 253
7.20 Systematic uncertainties from a reweighted down petamzation of the

AQhadronization . . . .. ... 254
7.21 Systematic uncertainties from a reweighted up parnmation of the’\g
hadronization . . . . . . . . ... .. 255
7.22 Systematic uncertainties from underestimatiobyadetector resolution . . 258
7.23 Systematic uncertainties from decreasingjihesed to calculat&y intrin-
sicwidths . . . . . . . . 260
7.24 Systematic uncertainties from increasingghesed to calculat&y intrin-
sicwidths . . . . . . . 261
7.25 Systematic uncertainties from using an avedage- 2, mass splitting . . . 264

XV



Chapter 1

Introduction

1.1 Historical Background of Particle Physics

In the 5th century B.C., Greek philosophers such as Demodiiisintroduced the
idea that matter consisted of an infinite number of smallivistble particles. They called
these particles “atoms,” which meant “unable to be divided.

The idea of the atom as indivisible persisted for centutias| 1897, when J. J. Thom-
son discovered that the “cathode rays” emitted from hot #ats of wire were actually
negatively charged particles with an extremely large oflrdogmass ratio. In fact, particles
with the same charge-to-mass ratio were ejected from difteatoms, leading Thomson to
hypothesize these particles were of a single type. Todaknees this subatomic particle
as the electron. Since atoms as a whole were known to beieddigtneutral, the discov-

ery of negatively charged components to the atom impliedetineust also be positively



charged components to compensate. Since the negativetyechparticles are so light, the
positively charged component must carry most of the atonalsan

Early in the 20th century, Ernest Rutherford performed atsgag experiment where
a beam ofu-patrticles (ionized helium atoms) were fired at a thin shégbotd foil. Some
of thesea particles scattered at large angles while most went thrabghfoil without
scattering at all. From this, Rutherford concluded that th&itive charge and mass of an
atom were concentrated at the atom’s center and occupigdittex of the atom’s total
volume — a nucleus. He named the nucleus of hydrogen, theesighlement, the proton,
and in 1914 Niels Bohr proposed a hydrogen model which catsist a single electron
orbiting this proton. However, the next heaviest atom, um]i weighed four times the
mass of the hydrogen atom although it contains only two elastand thus can have only
two protons for the charge to balance. This mystery was ddlvdé932, when Chadwick
discovered the neutron, a heavy electrically neutral glartivhich also resides inside the
nucleus.

Around the same time, other phenomena led to revolutiontsariteory of light. Isaac
Newton assumed light was a corpuscular object, but 19thucgphysics had shown in-
stead the wave-like nature of light. In 1900, Maxwell Plafmknd a mathematical model
for the black body radiation spectrum emitted by a hot objela could only explain this
spectrum by assuming that the radiation emitted by a blacly beas quantized, mean-
ing the energy was always an integer multiple of some quaritit1905, Albert Einstein

proposed the much more radical idea that this quantizatias avproperty of light itself,



returning to the classification of light as a particle. Théstjzle, the quanta of light, is

called the photon. The quantization of light led to an ehtireew description of electro-

magnetism; classical electrodynamics described theatien between two electrons, for
example, as a consequence of the electric field around eactragl. But in a quantum

field theory, that interaction is a consequence of the exghanhparticles, the field quanta,
which is photons in the case of electromagnetic interastiobhis realization paved the
way for future descriptions of the subatomic world. One stid@e of this description was
its use by P. A. M. Dirac in 1930 to predict the existance ofmaatter, an opposite-charge
counterpart to every matter particle. His theory was vetifess than two years later when
Anderson discovered a positively charged twin to the edegtdubbed the positron, in his
study of cosmic rays.

The simple view of the world as composed entirely of protoresitrons, and electrons
did not last long. In the 1930s, there was no answer to thetignesf what held the posi-
tively charged protons in the nucleus together; gravitpesweak to overcome the electric
repulsion. Initially, this force was simply called the ‘&g force.” In 1934, Yukawa at-
tempted to explain this strong force as a field between th®pignd neutron in the nucleus;
this field must also be properly quantized, and Yukawa catedl the mass of this quanta
to be about one-sixth the mass of the proton. In 1937, twgaeddéent groups studying the
interactions of cosmic rays discovered a particle matchirigawa’s description. However,
more detailed analysis of cosmic ray data showed this pa(tater identified as the muon,

a heavy version of the electron) interacted only very weakt atomic nuclei. In 1947,



another, heavier particle (the pion) was discovered in tsnic rays, and this proved to
be the true Yukawa patrticle.

Also in the early 1930s, another puzzle presented itselhenform of nuclear beta
decay. In beta decay, the radioactive nucleus transfortosairslightly lighter nucleus
by emission of an electron. This seemed to be a straightai@mhiwo-body decay; as
such, the energies of the outgoing particles are kinemigtidatermined in the center-
of-mass frame. However, the energy spectrum of electrobgta decay was found to be
continuous, with the predicted energy serving as the uppértb the spectrum. Atfirst this
anomaly appeared to be a non-conservation of energy. Wigfgauli, however, postulated
the seeming two-body decay was really a three-body decalythenthird particle was a
massless, electrically neutral, virtually undetectatae particle. This suggestion worked
so well that it was generally accepted, even though the fastrimo, as this particle came
to be called, was not experimentally observed until the h880s.

As the study of cosmic rays continued, and were soon joinethé\studies of parti-
cles produced by man-made nuclear reactors and particddeaators, more and more new
particles were discovered. By the 1960s, more than a hundffecetht particles had been
identified, although some were later shown to be spuriouds pivliferation led many
physicists to wonder — could all of these particles truly bedamental? In 1961, Mur-
ray Gell-Mann managed to organize many of these partickesgaometrical patterns by
their properties, similar to Mendeleev’s ordering of cheamhielements. Gell-Mann’s pat-

terns predicted one particle with specific properties winat not yet been observed, and



in 1964, this missing particled™) was indeed discovered. Starting from these patterns,
Gell-Mann and Zweig were able to describe many of thesegbestas composed of more
fundamental building blocks known as “quarks.” Particlesde of quarks were referred to
as hadrons. There are two types of hadrons: mesons, whithiceme quark and one anti-
quark, and baryons, which contain three quarks or threguaantks. Gell-Mann and Zweig
required three quarks to explain all the known hadrons. Atfoquark was predicted as
early as 1964 to explain some experimental observatiommsaaneson made of this fourth
quark was finally seen in 1974.

Since that time, two more quarks have also been discovenedast as recently as
1995. The electron and the muon, along with neutrinos, atemamle of quarks but are
fundamental particles called leptons. There is anothdoifepralled the tau, which was
discovered in 1975. Experiments have shown that there pegate neutrinos for electrons,
muons, and taus. These particles, and the forces that gthedrinteractions, make up the

Standard Model of particle physics which we use today.

1.2 High Energy Physics in the 21st Century

Particle physicists study the fundamental building blocksnatter, seeking to under-
stand their origins and interactions. These particled exishe smallest scales of time and
length, making them impossible to “see” with any traditiomécroscope. Instead, we use

high energy colliders as our microscopes for the subatorortdw In a collider, particles



such as electrons or protons are accelerated to near the spkght, and then collided
with particles traveling at the same speed in the opposiection. The energy we give
these particles by accelerating them, using Einstein'stasmelation 0E2 = méc* 4 p2c?,
allows us to probe their interactions at shorter distanedesc the higher the energy, the
shorter the distance scale we can probe with this partickeascope. Thus, this field of
physics is known as high energy physics.

The Tevatron at the Fermi National Accelerator Laboratergurrently the world’s
highest energy hadron collider. It accelerates protonsaaigbrotons to 980 GeV and
collides them to create a shower of particles. The electibf®V) is a unit of energy com-
monly used in particle physics, and 1 GeV, or Gigaelectrtini®equivalent to approxi-
mately 1602x 1019 Joules. The particle collisions occur in the center of latgectors
situated on the collider which measure the properties optrécles created in the colli-
sion. There are two detectors on the Fermilab collider, thiideo Detector at Fermilab
(CDF) and the D@ detector. The data collected by these desastthen used by physicists
to reconstruct the collision and identify the outgoing jzdes.

By studying particle collisions at higher and higher enesgiehysicists continue to
test how particles interact. Although the Standard Modepatticle physics developed
in the last few decades has successfully described pairtieleactions thus far, the model
has limitations. For example, the Standard Model canndiaéxwhy there should be six
guarks and six leptons or why they have the masses they doHifigs particle, which in

the Standard Model is the particle whose interactions divetlaer fundamental particles



mass, has not yet been observed. The Standard Model alsot exptain why the universe
around us is composed almost entirely of matter with vetig lantimatter. And this model
cannot explain why neutrinos, which were thought to be neasslhave now been shown
to have a very small but nonzero mass. The Standard Modetstids is incomplete and
there must be some new, undiscovered physics behind it. Byngga better understanding
of particle interactions at higher energies, today’s higbrgy physicists are working to

uncover the new physics beyond the Standard Model.

1.3 Outline of this Thesis

This thesis describes the observation and measuremers Bf*t‘iﬁandzé*)i hadrons,
whose measurement can shed light on the nature of strong foteractions between
quarks. The theoretical predictions and motivations festhmeasurements are given in
Chapter 2. A description of the experimental apparatus usdzbth measurementsis given
in Chapter 3. The data samples collected by this experimentescribed in Chapter 4.
TheB**? measurement is detailed in Chapter 5, WhiIeIlS?;’li measurement is described
in Chapter 6. The systematic uncertainties for both measemeare shown in Chapter 7.

Finally, the results and conclusions of both measuremeatstanmarized in Chapter 8.



Chapter 2

Theoretical Motivation

2.1 The Standard Model of Particle Physics

The Standard Model of Particle Physics is the most sucdetbedary to date for de-
scribing elementary particles. In the Standard Model, atter and its interactions are
characterized by three kinds of elementary particles: kpjdeptons, and the force medi-
ators. The quarks and leptons are called “fermions” becthesehave half-integer spin
values,S= % They interact with each other by exchange of the force ntediawhich
are called “bosons” because they have integer spin values.fuhdamental particles are

described in more detail below.



2.1.1 The Fundamental Particles

The six leptons and six quarks are listed in Tab. 2.1. The esagSeach particle are
given in units of MeV/¢?, where 1 MeV/c? = 1.783 x 1030 kg. For each fundamental
particle, there exists an antiparticle with the same mas®pposite quantum numbérs
The antimatter particles are generally denoted by puttitigeaover the particle symbol.
For example, the antiparticle equivalent of the down quarﬁeinotedj_and pronounced
“d-bar.” One exception is the positron, the antimatter edeitezof the electron, which has
its own name and is denoted by rather thare.”

The leptons all carry integer values of electric charge, amdarranged in three gen-
erations (electron, muon, and tau). The muagnsafd taus) are heavier versions of the
electron €); they have the same spin and electric charge. The neuptrs are called
neutrinos, and there is one associated with each leptonajere In the Standard Model,
lepton flavor is conserved by all interactions. The leptaesassigned a lepton number of
+1, while the antimatter leptons have a lepton numberdf Recent observations have
shown that neutrinos can oscillate from one lepton flavomimtizer [1]; so far this is the
only observed violation of lepton number conservation.

The quarks all carry a fractional electric charge of eithéror —%. As with leptons,
the quarks may be arranged in three generations. The chattopiguarks are heavy ver-
sions of the up quark, while the strange and bottom quarkbeaey versions of the down

quark. Although leptons can exist freely, quarks are codfimebound quark-antiquark

1There are theories in which neutrinos are their own aniigas, but this has not yet been experimentally
confirmed. Thus we still refer to a neutrino antiparticle



states (mesons) or bound three quark states (baryons).kQcary an extra degree of
freedom in addition to electric charge and spin. This degfeieeedom has been called
“color charge” and the three possible color chargegedgeblue, andgreen These do not
denote literal colors, but are only labels for the color gearjust as “plus” and “minus”
are labels for the electric charges. The parallel of theradtarge with visual color is that
red, blue, and green light combine to make white light; thiexactly the requirement for
bound quark states, they must be colorless. In baryons esok qarries one of the color
charges; in mesons, one quark carries a color charge andhtecarries the correspond-
ing anticolor charge. Tabs. 2.2 and 2.3 list the quark cdraéthe mesons and baryons
mentioned in this text. Similar to the previously discusggamton number conservation,
baryon number is also conserved in any interaction. Baryomsssigned a value ofl
while antibaryons (containing three antiquarks) have aevaf—1. There is no equivalent
rule for meson number conservation.

Physicists considered it curious that the proton and théroielnad very nearly the
same mass (9387 MeV/c? and 93957 MeV/c?, respectively), the same spiB£ %), and
appeared to differ only in electric charge. In 1932, Wernersenberg postulated that the
proton and neutron were two representations of a singlécfgarin analogy to spin, this
symmetry was called “isospin.” The proton and neutron wesegmed isospih = % with
the proton being “isospin up” and the neutron “isospin déwiday we recognize isospin
symmetry as a result of the nearly equal up and down quarkesa#fsall quarks had the

same mass inside hadrons, isospin would be carried by alksjuds it is, only the two
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lightest quarks obey isospin symmetry to a good degree. Tmusip and down quarks
have isospin = % and all other quarks have isosgdin= 0. Another example of isospin
symmetry is for the pions, which have= 1. The masses of the" andr® given in Tab. 2.2

are close but not exactly the same. The mass difference eethagrons which differ only

by replacing ai quark with ad quark is an indication of isospin symmetry violation.

2.1.2 Particle Interactions

In the Standard Model, interactions between the fundarhémtaions are mediated
by the exchange of the force mediators, also known as gauggnbo There is a different
gauge boson for each of the four forces in nature: the strankpar force, the weak nuclear
force, electromagnetism, and gravity. The mediators aladive strengths of these forces
are given in Tab. 2.4.

Electromagnetic interactions are responsible for mogradtions outside of the nu-
cleus. Electromagnetism binds electrons to nuclei andus the basis of all chemistry.
These interactions are mediated by a massless, spin-1 bafled the photon. Although
the photon carries no electric charge, it couples to alliglag with a non-zero electric
charge. Because the photon is massless, the electromafpregchas an infinite range,
although its strength drops off rapidly agr.

The strong nuclear force is responsible both for bindingkmitogether in hadrons and
for binding protons and neutrons together in a nucleus. dlmeractions are mediated

by massless, spin-1 bosons called gluons. The color chamjied by quarks may also
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Table 2.1: The fundamental fermions. Charges are in unitseobso-
lute electron charge. All masses are taken from Ref. [1]. Téetmn and
muon masses are shown without errors because the errors sread.

Quarks Symbol Charge  Mass (Mgf)
up u +2 15-3
down d -1 3-7
charm c +2 (1.25+£0.09) x 10°
strange s -1 95+ 25

top t +2  (1742+£33) x 10°
bottom b —% (4.204£0.07) x 103
Leptons Symbol Charge Mass (Mgd?)
electron e -1 0.511
electron neutrino  ve 0 < 2eVId
muon V1 -1 1057

muon neutrino Vi 0 <0.19

tau T -1 177690+0.20
tau neutrino Vr 0 <182
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Table 2.2: Quark content of the mesons used in this text. &4aase
taken from Ref. [1].

Meson Quark Content Mass (Mg?)

et ud, ad 139570184 0.00035

™  (w-dd)/v2 13497664 0.0006

K=+ us, us 493677+0.016
KO, KO ds, ds 497648+ 0.022
D+ cd, cd 18693+ 0.4

DO, DO cu, Cu 18645+ 0.4
J/Q cC 3096916+ 0.011
B+ ub, Ub 52790+0.5

B?, BO db, db 52794+ 0.5

B2, B? sb, sb 53675+ 1.8
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Table 2.3: Quark content of the baryons used in this text. Seagre
taken from Ref. [1].

Baryon Quark Content Mass (Mg\®?)
P uud 93827203+ 0.00008
n udd 93956536+ 0.00008
s+, (1385 " uus 118937+ 0.07, 13828+ 0.4
>, %(13895" dds 1197449+ 0.030, 13872+ 0.5
N NET udc 228646+0.14, 25954+ 0.6
st uuc 245402+ 0.18
59 ddc 245376+ 0.18
A udb 5624-+9
PP I uub unobserved
PINRD I ddb unobserved
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Table 2.4: The four forces in nature and their correspondjagge
bosons. The strength roughly gives the relative magnitafieach force
in the case where two protons are just in contact [2]. Massesa&en
from Ref. [1], where the gluon mass is a theoretical value.

Force Mediator JP Mass (GeVc?) Relative Strength
Strong Nuclear  Gluong) 1~ 0 1
Electromagnetic Photory) 1= <6 x10 1 ev/c 102

Weak Nuclear Charget* 1- 80.403+0.029 1077

Neutral: Z° 1t 91.1876+0.0021

Gravity Graviton z unobserved 10%

change during a strong interaction. Consequently, the gltioemselves must be “bicol-
ored,” meaning they carry one color and one anti-color chafjnce leptons do not have
a color charge, they do not interact with gluons and thus dde® the strong force. The
interactions of colored particles can be modeled by renggitinat the observable world be
invariant under the SU(3) group of local gauge transforomsti The resulting field the-
ory is called quantum chromodynamics (QCD), and in terms®f3b(3) symmetry there
are eight gluons corresponding to each of the states in & cotet. Since the gluons are
massless, the strong force would also be expected to hamdentnge. However, due to
the confinement of quarks and gluons to colorless hadroesstat observe the force to be
of very short range, essentially the size of the nucleus.

The weak nuclear force is responsible for all interactiohgctv change quark flavors,

2The mathematical properties of groups are well-estatdisfer more information on the SU(3) group,
consult a group theory reference such as Ref. [3].
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such as nuclegB-decay. All leptons and quarks feel the weak force, which ésliated
by the massive, spin-1 intermediate vector bosons. Thegebaweak interactions are
mediated by th&v/+ andW— bosong, which have a mass ef 80 GeV/c?. The neutral
weak interactions are mediated by th&boson, with a mass of 91 GeV/c?. Because
these force carriers are so massive, the weak interact®a lenge even less than the size
of the nucleus.

Gravity, the weakest of the four forces, is the only forceahhis not included in the
Standard Model of particle physics. Physicists are stdrsking for a satisfactory theory
of gravity. Most models postulate the mediator of the gediohal force to be a massless,
spin-2 boson called the graviton, but such a particle hatoye¢ observed.

The Standard Model provides no explanation for the exigt@fidour separate forces,
and physicists are searching for a “grand unifying theory'ihich the four forces are
different manifestations of one underlying force. Thioefbegan in the early 18th century,
when it was realized that electricity and magnetism weraadlgt two aspects of a single
force, now called electromagnetism. Einstein attemptechbuer succeeded in unifying
gravity and electromagnetism into one single field theoryowkver, in the 1960’'s the
physicists Glashow, Weinberg, and Salam developed a vegessful theory which joined
the weak and electromagnetic forces (electroweak unificatiThe obvious next step is
to combine the strong and electroweak forces. There are poongsing early results, but

this is still a work in progress.

3The superscripts on th&* andZ® bosons refer to the electric charge carried by the particle.
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2.2 Quantum Chromodynamics

Quantum chromodynamics (QCD) describes the interactionslofed objects, and in
principle it can be used to calculate the properties of haslrdHowever, QCD problems
are notoriously difficult to solve analytically, as they et of path integrals in a contin-
uum theory. The strong interaction constantis not a constantgs actually decreases
as the momentum transfg?| of an interaction increases. A highigf| occurs when the
quarks are closer together. Consequently, the color fortedas two quarks is weak at
short distances; this property is known as “asymptoticdoee.” The color force then in-
creases as the?| decreases, or as the quarks move farther apart. This pypkeown as
“confinement,” is thought to be the reason quarks are confimbaedrons.

For high|g?| interactions, the quarks and gluons involved behave aphsiles. Be-
causens is so small, it is possible to use a perturbative expansiqguowers ofas to solve
QCD problems. This approach, known as perturbative QCD, (sadteel in some of the
most precise tests to date of QCD interactions at high ererdgiewever, few tests exist
of theories in regions of non-perturbative QCD. These natupeative QCD effects can
obscure or confuse indirect searches of precision measmtsmB decays, and it is im-
portant to understand their contributions as we continaes#farch for physics beyond the
Standard Model.

The QCD confinement scafegcp ~ 400 MeV/c? is the typical energy at which QCD
becomes non-perturbative. The description of quarks irdedmas inherently a low energy

interaction, whereis is of order unity. In this case, we typically exploit some sgatry of
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QCD rather than attempting a dynamical calculation. Thezesaveral prominent methods
for predicting QCD results at loywg?|, including lattice QCD, IN expansions, and effec-
tive theories. Lattice QCD uses a discrete set of space-tomtgpand heavy or light quark
propagators to reduce continuum path integrals to numeraaputations which can be
performed on supercomputers. Such simulations are tite&sive, and each sample takes
years to complete. However, the results can give insigbttim® non-perturbative regime
of QCD. The YN expansion starts from the premise that the number of caargfinite;
even though QCD has only 3 colors, the numbgN Is treated as small enough to ex-
pand around. Effective theories also simplify QCD calcolasiby expanding around some
parameter which is assumed to be either very small or infifibe example, chiral pertur-
bation theories assume the light quark masses are zer® ndalvy quark effective theories
assume an infinite mass for the heavy quarks. Heavy quargtietfieheories are used to
explain the heavy hadron nomenclature and this approaceseribed in more detail in

Sec. 2.2.1.

2.2.1 Heavy Quark Effective Theory

The QCD treatment of quark-quark interactions significastiyiplifies if one of the
participating quarks is much heavier thAgcp. The momentum exchange between the
heavy quark and the light quark is much less than the heavkquassmg if mg > Aqcp.

In this case, the recolil of the heavy quark is negligible, tr@dheavy quark acts as a static

source of electromagnetic and color (chromomagnetic)dield the limit of an infinite
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heavy quark mass, the interactions of the light quarks atependent ofng. With a
finite heavy quark mass, this formalism allows correctianthe limit using a systematic
expansion in powers dfqcp/Mg. Methods employing this formalism are known as heavy
quark effective theories (HQET) [4, 5].

The HQET approach is used to predict the spectroscopy of/$headrons,” hadrons
containing one or more heavy quarks. For an infinite heavykgoeass, the light quark
excitations alone determine the spectrum of the heavy hadrdhese solutions do not
depend on the flavor of the heavy quark, so to the first ordespleetrum of all heavy-
light mesons is expected to be the same. The heavy quarkasith spin quantum number

So = 3, which leads to a chromomagnetic moment

_ 9

As mg — o, the chromomagnetic moment approaches zero, and the dpragtion be-
tween the light quarks and the heavy quark is suppressedlédus to a doublet of hadrons
with the same mass for each light quark excitation level, stage for each possible value
of the heavy quark spin.

One example of the HQET approach is for Bismeson, made of bquark and aiord
quark. Theb quark has a spin angular momentdg= % while the light quark has a total

angular momentum

1
J :‘Lié‘ 2.2)

whereL is the orbital angular momentum of the light quark. The résglphysical hadron
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state has a total angular momentum of
1
J= ‘J|i§‘ (2.3)

In the ground state df =0, J, = % In the limit m, — o, the doublet states with = 0
(B) andJ = 1 (B*) would be degenerate. When effects of the ordénglare included,
the chromomagnetic interactions split the states withredafiit values od. This splitting,
called “hyperfine” in analogy with the hyperfine levels inm®which arise from the weak
nuclear magnetic moment, is proportional to the heavy qolardmomagnetic momep,.
As predicted, thd3* state is slightly heavier than thigstate, and decays ® via photon
emission.

The HQET approach has been successfully applied to desriable experimental
data onQqg mesons for the ground states and the lowestave excitations in both the
charm and sectors. The HQET approach for the lowBstvave excitations in thb sector

is described in Sec. 2.4.
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2.3 Production ofbb Pairs in a pp Collider

The simple model of a proton is of three quarks (twand oned) bound together
by the strong force, or the interchange of gluons. Howeverknow the real picture is
more complicated — there are many, many gluon exchangesiogat any time. Some
of these gluons may also split into quark-antiquark pairgctvivill annihilate back into
a gluon. All of these pieces of the proton, collectively re¢e to as “partons,” will carry
part of the total energy or momentum. Hadrons are compos#ded classes of partons:
the valence quarks, which are the constituent quarks ofddeoln; virtual gluons; and sea
quarks, the quark-antiquark pairs produced by virtual giuoThe hadron momentum is
not distributed equally among all partons, but the measpegtbn distribution functions
f2(x) give the probability that partoncarries a fractiorx of the total momentum of the
hadrona.

At the Tevatron, protons and antiprotons collide with a eenf mass energy of/s=
1.96 TeV. At these energies, the collision time and distand¢esdzen partons is so short
that the partons may be treated as free. In this case peit@l$aCD and the parton
distribution functions may be used to determine the possitteractions. Very rarely is the
entire momentum of the proton and the antiproton involvealdollision. More commonly,
only one parton from the proton and one from the antiprotdhimteract, via the exchange
of virtual bosons.

There are many ways in Whichbﬁpair could be produced, as shown in Figs. 2.1

and 2.2. Fig. 2.1 shows the lowest or leading order QCD praoluctThe leading or-
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(a) (b) (c)

q b 9 _ b 9 b
Figure 2.1: Leading order processeslrproduction at a hadron collider.
Process (a) is flavor creation througdpannhiliation, where can be any
quark. Processes (b) and (c) are both forms of flavor creatagluon
fusion.

der mechanisms are those with the fewest possible numberaok-gyluon or gluon-gluon
connections. In leading order production, ﬂbﬁepair are the only outgoing products so
they move away from each other with equal but opposite momienthe center-of-mass
frame. The leading order production dominatesdgrpairs when the quark masg, is
comparable to or larger than the average momentum carriételpartons; at the Tevatron
energies, this is only true of production. Foibb production, next-to-leading order pro-
duction mechanisms such as those shown in Fig. 2.2 also @agndicant role. Each of
these mechanisms has one more quark-gluon or gluon-gluamecton than the leading
order mechanisms, resulting in a final state Witbﬁapair and a gluon. In this case, the
gluon may take a significant portion of the energy.

The confinement of QCD never allows a quark or gluon to be obskefree. After
the bb pair are produced, the color force must organize them inkoriess hadrons. This
is usually achieved by the creation of additiogglpairs in a process called “fragmenta-

tion” or “hadronization.” The free gluon must also fragmartb qq pairs which will form
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(a) (b)

b g _ 9
Figure 2.2: A few possible next-to-leading order processdsb pro-

duction at a hadron collider. Next-to-leading order prgesshave one
more quark-gluon or gluon-gluon connection than leadindepipro-

cesses. Processes (a) and (b) are both forms of flavor ergttrough

annhilation (a) and gluon fusion (b). Process (c) is retketeeas flavor

excitation. Process (d) is referred to as gluon splitting.

hadrons. For high energy gluons loquarks, many fragmentation particles may be pro-
duced, leading to a collimated “jet” of hadrons whose totergy sums to the energy of the
initial quark or gluon. The fraction§,, fg, fs, fc, andfa, give the likelihood for é-quark

to first produce auu, dd, ss, cc, or diquark-antidiquark pair respectively. Depending lom t
qq produced, thé quark will hadronize into 8+, B, B, B¢, or AD. TheB{ is produced
so rarely that the production fractidg has not yet been measured. The fractifps: fy

have been measured at bethe and pp colliders to be about 384 1.0% [1]. A recent
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CDF measurement of the relative production fractions fingts [6

f
f—” = 1.054-+ 0.018 (stat) "0022 (syst) + 0.082 (BR)
) .

f
(. = 0.16040.005 (stat)* 315 (syst) " 335 (BR)
u d

f
f ibf — 0.28140.012 (stat) 3938 (syst) 9428 (BR)
uT Id ' '

The three errors on each measurement are due to statistictaidtions (stat.), systematic
uncertainties (syst.), and uncertainties due to measumsnoé the branching ratios on the

decays of the given hadrons (BR).

2.3.1 Topology of abb Event

After reviewing thebt_)production mechanisms in a proton-antiproton collisioa,can
picture a typicabb_ event. In onebdb collision, two partons interact to producebE pair
and possibly also a gluon. The twauarks and the gluon fragment, producing many other
outgoing hadrons. The remnants of the proton and the attipraust also now hadronize
to form colorless states, which produces more hadrons ladéceto theb quark production.
This source of background is referred to as the “underlyirene” In addition, there may
be more than on@p collision in one bunch crossing. At the very highest lumities,
there may be 5-1@p interactions at every bunch crossing! Fortunately, eackoprand
antiproton bunch is about 30 cm long, so when multipfeinteractions occur, they are
typically far apart. Background hadrons from anotipgr collision are referred to as a

“pile-up event.” The topology of a typicédg event in the CDF Il detector is shown in
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Opposite side B
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Fig. 2.3.

\
\ B decay
\i products

Gluon jet - .
Figure 2.3: Topology of a typicddb event in app collision, shown in the
transversy plane. This is a next-to-leading order production mecha-
nism with abb pair and a gluon jet, along with the underlying event from
hadronization of thepp debris. The transverse decay length (typi-
cally on the order of 1 mm) and impact parametgof the B meson are
also shown. Figure not shown to scale.
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2.4 Theoretical Predictions forB**©

The next step in the spectroscopyBimesons is the first orbitally excitet & 1) state
of the light quark. The total angular momentuthof the meson is a combination of the
total angular momenturd of the light quark and the spin of the heavy quark. In the case
of non-zero orbital angular momentum, the light quark hastal angular momentum of
J = |Li %] WhenL = 1 this leads to two isospin doublets of excited states, ortle wi
J = % J =0 or 1, and another with = % J =1 or 2. These four states are collectively
referred to aB**. The two states with, = % are calledBy andBj, and decay taB*) 1
via aS-wave transition; consequently, these states are verybvath their intrinsic width
expected to be- 100 MeV/c? [7]. The states withi, = % are called3; andB5, and decay to
B(*)1tvia aD-wave transition; therefore these two states are muchwerrthan theJ, = 1
states. The decag; — Bris forbidden by angular momentum and parity conservation,
while bothB; — BrtandB; — B*mtare allowed. Tab. 2.5 summarizes the faur 1 states
and their decays. Thi spectrum is depicted in Fig. 2.4.

Decays toB*mt are immediately followed by the decay Bf to B by emission of a
photon with energyE (y) = 45.78+ 0.35 MeV/c virtually 100% of the time [1]. These
low energy photons cannot be separated from the large anodwther electromagnetic
background sources in the CDF Il detector; consequentlyrabenstructed mass of the

B** states is decreased by the energy of this photon.

4In contrast to atomic spectra, for heavy hadrons the firstallpexcited states actually lie below the first
radially excited states. This is due to the increasing~ditiance nature of the strong interaction between
the quarks.
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The four orbitally excited3™* states exist for botB* andB°, denoted respectively by
B*+ andB**0. TheB*** states are expected to decaptd)=C or B*)%1t=, while theB**0
states decay tB*)om or B*)*1tF. If the B** is heavy enough, the decay t@®aneson and
two pions is also allowed for each charge state. The CDF lloti@tecannot reconstruct
neutral pions, which decay to two soft photons before thertakters; therefore the pre-
ferred reconstructed decay modes are those involving edasgpns. This thesis presents
the reconstruction oB**0 states decaying tB*)*1F. For ease of referenc&** will be

used in place oB**? andB; andBj in place ofB? andB3° from this point on.

Table 2.5: Properties of the four orbitally excitdd=€ 1) B** states.

State J J° Width  Decay

By 3 0" broad (Bm
B; 3 1" broad (B'm)
B. 3 1t narrow (B'm)
B5 3 2t narrow (BmB*m)

The HQET approach may be used to predict the properties @‘thetates. Tab. 2.6
shows the predictions for four applications of HQET, eadhgisa different model to de-
scribe the motion of the light quark. Ref. [8], which preditie masses for only the two
narrow states, employs next to leading order heavy quararesipn from measurements of
the orbitally excitedd mesons [12]. This method is also used to predict the intrivwilth
of the B} state and the ratio of widths for ti#$ and theB;, as shown in Tab. 2.7. Ref. [9]
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uses an effective heavy quark model for thquark and a non-relativistic potential quark
model for the light quark. Ref. [10] applies heavy quark syrmgnand a non-relativistic
valence quark model for the light quark. Ref. [11], on the otiend, uses a fully relativis-
tic treatment of the light quark to model the quasipoterttédcribing the heavy-light quark

dynamics. This is a significant improvement over the noatiaktic treatment.

Table 2.6: Predictions for the masses of the fBuft states, using the
HQET approach with different models to describe the moticth® light
quark. All theoretical predictions find an average valuetfa charged
and neutraB** states.

State Ref.[8] Ref.[9] Ref.[10] Ref.[11] Units

m(B;) 5.650  5.870 5.738  Ge\¢?
m(B}) 5.650  5.875 5.757 Ge\?
m®B;) 5.780 5.759  5.700 5719 Geg¥

m@®;) 5794 5771 5715 5733 Gg

Table 2.7: Predictions for the intrinsic widths of the twornosav B**
states, calculated in Ref. [8].

Name Prediction

r(B3) 1646 MeV/c?

[(B)/I(B5) 0.9 (for pureD-wave)

All theoretical predictions show the mass separation betvike two narrovi; andB;
states should be small, on the order of 20 Me&V/Elowever, theB; and B5 mass peaks
will be additionally separated by the mass difference betwitbeB* and theB. One extra
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complication to the mass spectrum arises fromBhe- B*1t decay; this mass peak will
be displaced from th&; — Bt mass peak by the energy of the photorBindecay. The
predicted relative branching ratio of the t) decay modes is based on observations of

the charm sector. For tHe;,

* 5
BW%—%M)_&X(m) o0

BR(Dj; — D*T) kp-
wherekp (kp+) is the momentum of the pion in the rest frame of I®*), andF; is the ratio
between the form factors in the two decay channels. The saltiky(kp+) are obtained

from a simple kinematic computation using the world averagsses ob(D*), T, andD5.

The 2006 world average value for this ratio is [1]

BR(D; — Dm)
BR(D; — D*m)

— 23406 (2.5)

A formula of the same form is valid for thi}. Thekg(ks:) are calculated using the world
average masses B{B*), 1, and the value of 5730 Me\Ador the B5. Heavy quark sym-

metry setdy, = R [13]. The resulting ratio of branching fractions is preditto be

BR(B; — B
BR(B; — B*)

=11+03 (2.6)

Due to their large intrinsic width, thBj andBj states are difficult to observe, and have
not yet been measured. The narrB{vandB;P states, however, were first observed by the
LEP experiments [14, 15, 16]. More recently, the nari@iP states have been precisely

measured by the DELPHI [17] and D@ experiments [18].
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2.4.1 Contribution of B0

The same orbitally excited states which exist for Bi@neson also exist for thBs
meson. They are called tigg" states, individually denotefly,, B}, Bs1, andBg,. As in
theB** system, the statd, andB}; are expected to be broad and have not been observed.
The narrow statdg decays toB*K if its mass is above the kaon decay threshold. The
narrow statdy, is kinematically able to decay to boBK andB*K, although its mass may
not be above th8*K decay threshold.

The narrowB;*° states contribute to thé** analysis as a background when the kaon
is misreconstructed as a pion. Depending on their massesiafiowB* states may lie
under theB** signal region when misreconstructed. Thus, for @& analysis it is im-
portant to estimate where tig$* states will be reconstructed and how smeared the signal
peaks will be. At the time this analysis was performed, ohI@ngg — BK decay had
been observed [16, 17]. The dedd§ — B*K had not been observed, although B
mass measurements indicate it may be massive enough todadagB*K channel. We
estimate thé:$ contribution as described in Sec. 5.1.4.

Since that time, the dec#&f, — B*K has been observed at CDF along with Bf§ —

BK decay [19]. This represents the first measurement oBfhetate. An update to the
B** measurement presented in this thesis is currently underveywill include a more

accurate estimate of tH&* contribution.
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Figure 2.4: Predicted spectrum and dominant decays of theskolying
B meson states.
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2.5 Theoretical Predictions forZE,*)i

The baryons containing one bottom quark and two light quérks d) can also be de-
scribed using heavy quark effective theories. The two lggterks act together as a diquark
system surrounding thequark, which is again a static source of the electromagaeiitc
color fields. The diquark state may either be symmetric, nmggthe light quarks are in the
singlet spin state, or antisymmetric, if the quarks are @ttiplet spin state. Diquark states
in an antisymmetric flavor configuratidg,, o] are called\-type whereas those in a flavor
symmetric statgq;,qy} are calledz-type. In the ground\-type state the light diquark
has isospiil =0 andJ|P = 0", which when coupled with the heavy quark spin leads to a

state with total® = 1 . In the ground=-type state the light diquark has isospig: 1 and

1+
2
JP = 1*. With the heavy quark spin, this leads to a doublet of baryeitis J° = %+ (Zp)
andJ® = 3" (). The baryon multiplets witd” = 1 andJP = 3" are shown in Fig. 2.5.
The ground staté\-type baryons decay weakly, and the ground skatgpe baryons
decay strongly ta\-type baryons by emitting pions. Tt baryons exist for all charge
states, namelg{”'* andz"'°. Unlike in the meson systera,”" andz\"~ contain dif-
ferent quarks yub and ddb, respectively) and are not antiparticles of one anothere Th
antiparticles are denoted B”" ands.”’ . The={"* decay toAlre, while the={"°
decay td\gno. As the CDF Il detector cannot reconstruct neutral pions,eeech only for

the Zé*)i states. For convenience, we U§gto indicate all the charge}fié*)i states and,

specifically forz;=.
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In the limit m, — oo, the spin double{>y,Z;} would be exactly degenerate, but as
in the B** case there will be a hyperfine mass splitting between theldbstates. The
hyperfine mass splittings are denotedrb{; ") — m(Z}) = A,y andm(Z, ") —m(Z;) =
A, . There is also a mass splitting between Efg@* and ZE)*H states due to isospin
violation and Coulomb effects. Due to this additional maditsm, the hyperfine splitting
is not expected to be the same for E@andzg statesj.e. A, # A,._. Using the world
average mass values for theystem (ars quark combined with two light quarks), there is a
difference of 368+ 0.64 MeV/c? between the hyperfine splittings(>+) — m(3(1385%)
andm(X~) —m(Z(1385 ) [1]. The difference should be smaller in thg system due to
the much heavidb quark mass. Scaling the mass difference indtsystem by the ratio of
thes quark mass to thk quark mass, we expedt., = A, + (0.40-+0.07) MeV/c? [20].

Another interesting aspect ofzg measurement is to measure the polarization both of
the produced;, and the/\g from X, decay. A heavy quark should not be significantly
affected by the low energy interactions inside a hadronhdn ¢ase, the polarization of the
resulting hadron may give information about the polar@atstate ot quarks produced
in the fragmentation process [21, 22]. Thus measuring therigation ofZ, baryons will
give insight into the fragmentation mechanism®afuarks.

There are a number of predictions for the masses and isogiiitings of these states
made using HQET, non-relativistic and relativistic poigihtodels, ¥N; expansion, sum
rules, and lattice QCD. Tab. 2.8 summarizes many of thesedheal predictions. The

isospin splitting between the negative and positive pastoéthe isospin triplet, predicted
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to be large in some models (see Tab. 2.9), may also be possitrleasure. Overall, based
on these theories, we expect to s&&p,) — m(AD) ~ 180— 210 MeV/c?, m(Z}) — m(Zp) ~
10— 40 MeV/c?, andm(z\) ") —m(z47") ~ 57 MeV/c2.

The intrinsic width ofz, baryons is dominated by single pion transitions. Photarsira
tions of the type&, — Apy are expected to have significantly smaller{00 keV/@) partial
widths than the single pion transition, and are thus ndgkgi1]. The partial width of the
P-wave one-pion transition depends on the available phassesf-or charmed baryons in
HQET, this partial width is given by the following equatiofil]]:

rzca/\;rn = %m_i ‘ fp‘z | ﬁ|3 (2.7)
wheref, = ga/ fr; ga is the constituent pion-quark coupling, afig= 92 MeV is the pion
decay constant. For the charmed barydvis— Maz andMj1 = Ms.. The momentum of
the pion in theX; center of mass (CM) frame i8. This formula predicts widths foié*)
baryons which are in excellent agreement with world avedaga [1], as can be seen in

Fig. 2.6. Fitting the world average data with the paramgideft free gives:
ga =0.75+0.05

Eqg. (2.7) is also valid foky baryons, by replaciniyl> with the/\g mass andvi; with
theX, mass. The momentum of tlag pion in the CM frame §) is precisely determined by
the masses of the particles,( A2, andr). In this analysis the mean valgg = 0.75 is used
to predict theX, widths. For the predictefl, masses, the expected widths are relatively
narrow, ranging from 2 to 20 MeX¢?. These narrow widths should make it possible to
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separately measure the doublet stakgsandZ;, given sufficient resolution on the mass
difference.

In order to separately measure mg” and Zl()*)_ states, we divide thég“) candi-
dates into two subsamples using the charge of the pion ﬁ{gﬁhﬂecay, denoted by, : in
the AT subsample thes, has the same charge as the pion frafwhile in the APt
subsample thes, has the opposite charge as the pion fiafh Thus, theAlrr subsam-
ple containsl\grr andﬂgn+ combinations from the decays of the particré,*sF and the

antiparticlesfé*)_, respectively. Th&\Y™ subsample containm™ andﬂgrr combina-

tions from the decays of the particlﬁé*)+ and the antiparticleié*H, respectively.
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Figure 2.5: Baryon multiplets witd® = 3" (a) andJ” = 3" (b). The
2}, states are located on the second tier, which shows baryah®neb
quark.
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Table 2.8: Mass predictions faﬁg andZy baryons using various heavy
quark models. All theoretical predictions find an averagee/dor the
3, charge triplet. Ref. [32] uses the spin averaged Mass,) = %(Zb-i-
23}). When two errors are quoted the first is statistical and therskis

systematic.

Reference m(AQ)[MeV/c?]

m(Zp)[MeV/c?]

m(Z;)[Mev/c?

[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37]

[38]

5596
5585
5640
5580
5547
5379—5659

<5630+30

5620+ 40

5623+ 5+4 (exp. inp.)
5623+ 5+4 (exp. inp.)
5679+ 7113

5664+ 9833

5629— 5663

5624

5622

5859

5795

5780

5800

5714

5670- 5856

> m(/\g)+168
204 (s —A9)

5820+ 40

5840+ 8.9 (M(Zp))
582£2+9.0
588749725

141+ 244395, — A9)
58445871

5818

5805

5877
5805
5820
5841
5766

> 5710

233(5; - N))
5850+ 40
238+ 1.6 (I —=p)
58400+ 8.8
5909+ 47"33

22+ 107 (5 — Zp)

5874- 5900

5834
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I [MeVic)]

Table 2.9: Theoretical predictions of isospin mass spitifor theZ.
andz, states. All predictions are in units of Me'¢®.

Baryons Ref. [39] Ref. [40]

954+ 3.0 -1.4
-2 +7.1 +5.6
>0 _sitt 27 +0.1
-5t +65 +5.4
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Figure 2.6: The plot on the left shows the intrinsic wifitbf 2. baryons
(dashed line) andy, baryons (solid line) according to Eq. (2.7) as a func-
tion of the decay value, defined a® = m(Z¢ ) —mM(A¢p) — My Points
with error bars show the world average values¥gandZ{ [1]. The plot

on the right shows the fit to the world average data with thampaterga
floating.
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Chapter 3

Experimental Apparatus

The data used in these analyses was collected by the Collieiercior at Fermilab
(CDF), a general multi-purpose detector installed at thenkBlational Accelerator Labo-
ratory (Fermilab or FNAL). This chapter gives a synopsishef &ccelerator complex and
the detector, concentrating on those components of thetdetwith the most impact on

theB** andXy, analyses.

3.1 The Tevatron

The Tevatron was built in the early 1980’s at the Fermilab itaBi@, lllinois, USA.
The Tevatron was designed to accelerate protons and aotigrto one TeV of energy. In
the late 1980s, the Tevatron achieved a center of mass eoktgy TeV. A major upgrade
of the Tevatron took place between September 1997 and M&@h. Since that time, the
Tevatron operates with a center of mass energy of 1.96 Td\¢oMIder operations since
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Figure 3.1: Diagram of the Tevatron collider chain.

the upgrade are referred to as “Run I1,” with the previous apens referred to as “Run I.”
Run Il is scheduled to last until the end of Fiscal Year 200%h&n integrated luminosity
goal of 8 fb L. Early in 2007, the Tevatron had already delivered over 2 fif integrated
luminosity, with a record initial luminosity of 85 x 10°2 cm2s 1,

Fig. 3.1 shows a diagram of the Tevatron collider. Prot@)sad antiprotonsy, the
antimatter equivalent to the proton) are accelerated viaaiof smaller accelerators, be-
ginning in a Cockroft-Walton tower. Initially, electricalstharges in hydrogen gas produce

H~ ions. These ions are accelerated in the Cockroft-Walton wmtenergy of 750 keV.

40



The ions then enter a 500 foot long linear accelerator, @alie Linac, which uses cavities
with time alternating electromagnetic fields to acceletiageH™ ions to 400 MeV. The AC
nature of the Linac separates the continuous beam oioHs from the Cockroft-Walton
into bunches. Next, the bunches of libns enter the Booster ring, a synchrotron accelera-
tor of 475 m in circumference. At this point the ions pass tigtoa thin carbon foil which
removes the two electrons, leaving only a bare proton. Thes®owsing accelerates the
protons to 8 GeV and sends them to the Main Injector ring.

The Main Injector ring serves two purposes: it acceleratesops to 150 GeV for
injection into the Tevatron ring, and it also accelerategqnrs to 120 GeV for the purpose
of producing antiprotons. The 120 GeV proton bunches arentélom the Main Injector
to the antiproton source accumulator, where they are eallidith a nickel alloy target.
Antiprotons are produced through the interactiph p — p+ p+ p+ p. At Fermilab, the
production efficiency for this procedure 4s 16 x 10~°; thus for every 1 million protons
to hit the target, about 16 antiprotons are produced. Thairgng proton collisions result
in many different particles which must be removed beforeathigprotons can be collected.
This is done using a lithium lens to focus the particles fo#d by a pulsed dipole magnet
in which only negatively charged particles with the protoass will bend at the correct
angle to continue in the accelerator. The produced antpsohave a large energy spread
and must be stochastically “cooled” in the Debuncher togtirem all to the same energy.
The antiprotons are then sent to the Accumulator, wheredhefurther cooled and stored.

Once enough antiprotons have collected in the Accumul#ibey are injected into the
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Recycler in the Main Injector where they are even further eda@nd accelerated before
being injected into the Tevatron ring.

The Tevatron is the final accelerator, and is a supercomgysyinchrotron with a radius
of about one kilometer. The Tevatron accelerates the psdr@m the Main Injector and
antiprotons from either the Recycler or the Accumulator &ofthal collision energy of 980
GeV. At this energy, it takes about p& for one full revolution. The protons and antiprotons
travel around the Tevatron ring in bunches of 36 each. At th€ @dd D@ detector sites,
the proton and antiproton beams are focused by supercangugtadrupole magnets to a
width of approximately 3%um and the beams are crossed to induce collisions. The sharp
focus of the bunch width at the collision site leads to a da+ing of the length; although

each proton or antiproton bunch is only @ across, it is typically about 30 cm long.

3.2 The Collider Detector at Fermilab

TheB** andZy, analyses use data from the CDF Il detector, an azimuthallycamérd-
backward symmetric particle detector for studyimgcollisions in Run Il of the Tevatron.
A comprehensive description of the detector may be found in[B2]. The CDF Il detec-
tor was designed as a general purpose particle detectohwbiobined precision charged
particle tracking with fast projective calorimetry and figeined muon detection. The
CDF 1l detector is capable of making many different physicasueements and may be

used in the search for new particles and new physics. The dif&mences of the Run Il

42



CENTRAL DRIFT CHAMBER

ELECTROMAGNET T
CALOR IMETER

EM_SHOWER

MAXTMUM CHAMBER
HADRONIC CALOR IMETER
| MUON DRIFT CHAMBERS
STEEL SHIELDING
MUON_SCINTILLATGR
COUNTER

ISL (3 LAYERS)

SVX |1 (3 BARRELS)
INTERACTIGN POINT (BO)

SOLENOID COIL

PRESHOWER DETECTOR

SHOWERMAX DETECTOR

EL - 706 FT.

Figure 3.2: Cross- sectlonal view of the CDF Il detector. Thecter is
roughly three stories tall and weighs about 5 kilotons (idaig the outer
muon walls).

detector from the Run | detector [43] are the replacementet#ntral tracking systems,
the replacement of a gas sampling calorimeter with a skatitiy tile calorimeter in the
plug forward region, the addition of preshower detectoid atime-of-flight detector, ex-
tension of the muon coverage, and upgrades of the triggedore, and data acquisition
systems.

The detector is run and maintained by the CDF Collaborationyiéi-mational collab-
oration of over 800 physicists from more than 60 institusioA schematic diagram of the
CDF 1l detector is shown in Fig. 3.2. The following sectionghiight different aspects of

the detector.
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3.2.1 Detector Apparatus

The CDF Il detector was designed to be cylindrically symneedround the beamline,
and also forward-backward symmetric with respect togh@teraction point. CDF Il uses
a cylindrical coordinate system with tlzeaxis along the nominal beamline. The transverse
plane(x,y) is perpendicular to the-axis. The azimuthal angley, is measured from the
x-axis. The polar angld), is measured from theaxis. Pseudorapidity is defined as=
tanh1(cosh).

The detector is composed of many independent subsystenitsdeaigned to provide
some measurement of the outgoing particles. Most of thesgystems are described in

great detail in the original CDF Il technical design repo#][4

Tracking Systems

Precision charged particle tracking is crucial for most CD&nlalyses, and particularly
for the study ob hadrons. The tracking systems occupy the space closestppihterac-
tion point and consist of two primary subsystems, a silicacrostrip detector and a wire
drift chamber. The tracking systems are located inside apaiconducting solenoid which
produces a 1.4 Tesla field along the beamline direction;dlensid encloses a region 2.8
m from the nominal beamline and is 3.5 m long. Charged pastici@ uniform magnetic
field move with helical trajectories; the curvature of théxis used to determine both the
charge and the momentum of the particle. A cutaway view ofcquragrant of the tracking

volume is shown in Fig. 3.3.

44



m 4
2.0 — HADRON
E [ SOLENOID | .
. :
’ ya e
1.0 E ‘/' %
] e :
: ’;1" =

O LI I T I TTTT I T TT1 I L T T 11 | T
/) 1.0 2.0 3.0 m
LAYER 00 svx Il INTERMEDIATE SILICON LAYERS

Figure 3.3: Cutaway view of one quadrant of the CDF Il trackipg-s
tems. The tracking region is surrounded by the solenoid analtagp
calorimeters.

Silicon Systems

Solid state detectors make high-precision trackers.@ilin particular is readily avail-
able due to its commercial applications, and possessefiemtcelectrical and ionization
properties for use in a detector. Charged particles entarsggniconducting material such
as silicon will ionize in the bulk of the material, producietectron-hole pairs. The elec-
trons act as negative charge carriers while the holes acbsive charge carriers. The
semiconductor may be “doped” by adding atoms of anotherat¢into the silicon lattice.
If the doping atoms have more electrons than silicon atomessiticon is called “n-doped”
because there are now more electrons than holes. If theglapms have fewer electrons
than silicon, the silicon is “p-doped.” When p-doped and pabbsilicon are brought into

contact, what forms is known as a pn junction. The free chagggers in the p and n
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silicon will recombine at the area of contact, creating deley region at the junction with
no free charge carriers.

Silicon sensors consist primarily of one type of siliconjaity n-doped. Strips of the
oppositely doped silicon (usually p-doped) are then appdie top of the bulk silicon. To
measure the ionized electrons from a charged particle,hwhi@uld ordinarily be impos-
sible to detect due to the large number of free charge casribe entire silicon sensor
must be depleted by applying a voltage across the sensazetbrlectrons from charged
particles drift through the bulk towards the strip on topendthe charge is collected.

The CDF Il silicon system consists of three subsystems: tlyerl@0 (LOO), Silicon
Vertex (SVX 1), and Intermediate Silicon Layer (ISL) detexs [45]. Diagrams of the

silicon subsystems are shown in Fig. 3.4.

46



Figure 3.5: End view of the LOO silicon detector, shown sunaed by
the two inner layers of the SVX |l detector.

The LOO silicon detector [46] is not part of the CDF Il techiidasign; it was in-
troduced later as an enhancement to the silicon system twvapghe impact parameter
resolution on tracks and thus the efficiency of tagging jedsfb quark production [47].
The LOO detector consists of 48 radiation-hard singleesgiicon wafers mounted directly
on the beam pipe. Each wafer uses p-doped strips implantad ardoped substrate. The
strips have a pitch of 2Em and width of 8um, although the readout pitch is pfn since
only alternating strips are used. The silicon wafers hawedifferent widths, 8.4 and 14.6
mm. These wafers are interleaved in a 12-sided pattern agnsimoFig. 3.5. The inner
(outer) wafers are at a radius of 1.35 (1.65) cm from the nahbbieamline. The length of
the entire LOO detector is 90.0 cm. To reduce the flow of fresr@h carriers and prolong

the life of the detector, the silicon wafers are cooled-ttD Celsius.
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Around the LOO detector are the five layers of the SVX Il deiefpt5]. The innermost
SVX Il layer is located 2.44 cm from the beamline and the outest layer is at 10.6 cm.
The SVX Il silicon wafers are all double-sided, with a bulk teréal that is nearly pure
silicon, although slightly n-doped. On one side, all walease p-doped strips running in
the axial direction. Depending on the layer, these axighstre spaced 60-§@n apart
with widths of 14-15um. On the other side are n-doped strips running either at d sma
stereo angle or at 90@elative to the axial direction. The pattern for the steweels, from
innermost to outermost, is (9090°, —1.2°, 90, +1.2°). The stereo strips are spaced at
(141 pm, 1255 pm, 60pum, 141um, 65um) from innermost to outermost, and the widths
are 20um for the 90 strips and 15um for the small angle stereo strips. The SVX Il silicon
wafers are arranged in ladders that are four wafers long.fiveéayers are supported by
a barrel structure with space for the silicon cooling linéee SVX Il system consists of
three of these barrels placed end-to-end, with the nomieamspot in the middle of the
central barrel. The length of the entire SVX |l detector iS38dm, and these silicon wafers
are also cooled te-10 Celsius.

As shown in Fig. 3.4, the ISL detector [48] is located betwd#enSVX Il and the drift
chamber. There is more space available for the ISL than the, 8¥ich allows for an
overlapping silicon ladder structure. The ladders withaclebarrel are staggered, as with
the LOO ladders. The central barrel ladders consist of oyer levith staggered radii of
22.6 cm and 23.1 cm. The forward barrel ladders consist ofléers; the inner layer is

staggered at radii of 19.7 cm and 20.28 cm, while the outesrlesystaggered at radii of
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28.6 cm and 29.0 cm. The purpose of the outer forward layer isdrease the tracking
acceptance in the forward region. The inner layer extent t065 cm in length while the
outer layer extends t@| = 87.5 cm. As with the SVX II, the ISL sensors are double-sided
with one side having strips in the axial direction and thesotkide at a 2° small angle
stero. Whether the stereo strips are placed on the n or p siigs by wafer manufacturer
The strip pitch on both sides of the ISL sensors is if2 Since the ISL ladders are located
farther from the beamline, they do not suffer from as muclatazh damage as the LOO and
inner SVX Il ladders. The portcards for data readout androbstgnals are also located

on the ISL cooling lines. Thus, the ISL is cooled only46 Celsius.

Wire Drift Chamber

The rest of the tracking volume is occupied by a wire driftrobar, called the central
outer tracker (COT) [49]. Charged patrticles entering a wii# dhamber ionize the gas
inside the chamber. The resulting free electrons are in ectret field and will “drift”
toward the anode (sense wires) and away from the cathode \(fieds).

The COT is a cylindrical drift chamber with an inner radius 8f4icm and an outer
radius of 132.3 cm from the beamline, with a total length 0@ 8. The chamber is
filled with a 50:50 mixture of argon and ethane. Each measenédayer of the COT
is comprised of 96 sense wires organized into 8 superlayet aires each. The even

numbered superlayers (2, 4, 6, and 8) are axial, orienteadlpkto the beamline, while the

1The stereo strips are on the n side for Micron sensors andegp $ide for Hamamatsu sensors.
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odd numbered superlayers (1, 3, 5, and 7) areZtstereo relative to the beamline. The
stereo wires allovz measurements with a precision of less than 5 cm. Each syperta
divided into “super cells” inp, consisting of one wire plane and one field plane on each
side. Each wire plane contains the 12 sense wires along \Bithotential wires and 4
field shaping wires. Because the chamber is in a magnetic freddyee electrons do not
drift in a straight line. To account for this, the cells argeti at 35 with respect to the

r direction. This also means that for low momentum tracks pibstively charged tracks
whose trajectories bend in the same direction as the calsileed have higher tracking
efficiency, because they cross more wires before exitingltliechamber. This effect is
negligible for higher momentum tracks, which have a largédius of curvature. A diagram
of the cell layout for superlayer 2 is shown in Fig. 3.6 alorithwhe arrangement of all the

cells on the COT endplate.

Time-of-Flight System

Directly outside of the COT is installed a time-of-flight (T$ystem based on plastic
scintillators and fine-mesh photomultipliers. The TOF nueasent can achieve a 2 stan-
dard deviation separation between kaons and pions for mianhess than 1.6 GeV/c. The
TOF measurement and the energy loss dE/dx measured in the @QiBed for particle

identification at CDF II.
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Figure 3.6: Left: Nominal cell layout for superTélyer 2 in ttentral outer
tracker (COT) wire drift chamber. Other superlayers (inaigdhe stereo
layers) are similar except for the taper. Right: Arrangentdrdells on
the COT endplate.

Calorimeter Systems

Outside of the tracking volume, the goal is to measure theggnef particles, which
requires stopping the particle and collecting all the eypéeposited in the detector. This is
done using various calorimeter systems. In high energyiphythe basic calorimeter con-
sists of a layer of an absorber followed by a layer of a statiilg materiad. The particles
interact in the absorber, resulting in a “shower” of photegch enter the scintillating ma-
terial. The energy deposited in the scintillator produagstslation light (luminescense)

via excitation and de-excitation of atomic electrons; tkaoct mechanism depends on the

2For electromagnetic calorimetry, it is also possible to aseintillating material as the absorber. This
would be a homogeneous calorimeter rather than a sampliogroater.
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type of scintillator. The scintillation light is collectday photomultiplier tubes (PMTS).
The design of the calorimeter depends on the type of patodee detected. CDF Il uses
two main physical calorimeter systems: central calorimsetéhich surround the tracking
volume, and plug calorimeters which are located forwardlzaekward of the tracking re-
gion. Each of these systems is comprised of an inner eleafyogtic calorimeter and an
outer hadronic calorimeter.

Electromagnetic calorimeters are designed to stop elegtrehich interact with the
absorber primarily through ionization and bremsstrahltanjation, and photons, which
interact through the photoelectric effect, Compton scaierand pair production. CDF
Il also employs an imbedded two dimensional readout strgdter at the expected point
of the shower maximum, appropriately called a shower maraiet The purpose of
this detector is to get position measurements to match wattks and map the transverse
shower profile. It can help identify electromagnetic sh@ay@nd separate photons from
neutral pions. Hadronic calorimeters are designed to stmpdms such as pions, kaons,
and protons. Here there are many more complicated interectt work, from strong
interactions as well as electromagnetic. The particlesluad are all much more massive
than electrons and more absorbing material is needed tdtstapin the detector.

CDF II's central calorimeter consists mainly of four systertige central electromag-
netic (CEM) and shower max (CES) [50], central hadronic (CHA) avall hadronic
(WHA) [51] calorimeters. The plug calorimeter has primathyee systems: the plug elec-

tromagnetic (PEM), plug shower max (PES), and plug hadr@itA) calorimeters [52].
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Figure 3.7: Cross-section of the upper half of CDF II's end plug
calorimeter.

A cross section of the plug calorimeters is shown in Fig. I fie electromagnetic sam-
pling calorimeters are made of lead sheets interspersédowiystyrene scintillator, while

the hadronic calorimeters use steel absorber with acrgintiator.

Muon Chambers

The calorimeters should stop most electrons and hadrongets, muons are over 200
times heavier than electrons and interact only weakly wititen. Consequently, muons

will deposit little of their energy in the electromagneticdahadronic calorimeters, so the
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outermost layers of the detector are dedicated to muontt@tieany particle which makes
it to the muon chambers is assumed to be a muon. CDF Il use® sung drift chambers
for muon detection, which work on the same premise as the Cl@iFged particles ionize
the gas in the chamber and the ionization electrons drifatdvthe sense wire. The gas
used in the muon chambers is again a 50:50 mixture of argoredrathe. Beyond the
drift chambers are scintillation counters which are usedifoing and reject backgrounds
from out-of-time interactions. The configuration of the tehmuon chambers is shown in
Fig. 3.8 (right).

The CDF Il muon system is comprised of four similar detectstems which are distin-
guished by their physical locations and configurations. td$she muon chambers were
also part of the CDF Run | detector. The coverage of each systaheiazimuthp and
pseudorapidity) is mapped in Fig. 3.8 (left). The Central Muon Detector (CMUyars
the region beyond the central calorimeters. The Central Mljpgrade (CMP) also covers
the central region, but there is an extra 60 cm of steel albstdtween the CMU and CMP
to reduce non-muon backgrounds even further. The CentrahNixtension (CMX) exists
to extend the coverage in boghandn. It consists of arches of muon detectors arranged at
each end of the central detector. The fourth system is new R I1; it is called the In-
termediate Muon Detector (IMU) and is comprised of CMP-likambers which surround
the beamline on either side of the detector. The IMU is usemmunction with tracking

to identify muons in the forward regions.
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Figure 3.8: Left: Extent of CDF II's muon detector coveragehia az-
imuth @ and pseudorapidity. Right: Detail of the configuration of steel
absorber, wire chambers, and counters for the Central Muajrddie
(CMP) walls.

Luminosity Measurement

The beam luminosity is determined using gas Cherenkov cmildeated around the
beamline in the forward region (B< |n| < 4.7). The Cherenkov counter (CLC) has excel-
lent timing resolution. This makes it possible to measueeltiminosity of each bunch of
protons and antiprotons. The CLC may then also separatsioali from particles in the
bunches from beam losses, which are typically out of symahadion with the bunches in
the Tevatron. The amplitude of the signal is proportion#htonumber of proton-antiproton
interactions and is converted into a luminosity measureémwgh a 6% systematic uncer-

tainty, primarily due to the error on the knowledge of thdaséc pp cross-section.
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3.2.2 Trigger Systems

The trigger and data acquisition systems must accommduatagh data rates at CDF
II; the collision rate for Run Il is about 1.7 MHz, while the mapum rate at which events
can be recorded on tape is only about 75 Hz. CDF Il has implexdeat3-tier trigger
system to reduce the data volume, with each level providiregigh of a rate reduction to
allow the next level sufficient processing time. A block dem of the first two trigger

levels is shown in Fig. 3.9, with the levels described briegyow.

Level-1

The Level-1 (L1) is the first trigger level to make a decisioratcept (L1A) or reject
(L1IR) an event. The L1A rate is limited to about 25 kHz basedhentime needed by the
Level-2 triggers; thus, it must be implemented at the hardviavel. In fact, L1 is a syn-
chronous hardware trigger in which the decision always xcatia fixed timeq~ 5 us after
a beam collision. The L1 decision is made using data only fituerCOT, the calorimeters,
and the muon detectors. The CDF Il detector can also do a pnaliyntrack finding at
the L1 trigger level. For example, tracks can be matchedustets in the electromagnetic
calorimeters and to stubs in the muon detectors to allowlémte®n and muon identifica-
tion respectively at L1.

In the first step of L1 processing, the data from only the foualasuperlayers of the
COT is sent to the eXtremely Fast Tracker (XFT). The XFT is alyigparallel piece of

custom hardware designed to process the data from each brossing. After tracks have
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been reconstructed by the XFT, they are sent to the extragolanit (XTRP). The XTRP
extrapolates the COT tracks out to the calorimeter and mutattbe systems using look-
up tables. This track information is then passed to eacheof.thsubprocesses: L1CAL,
which triggers on objects like electrons, photons, jetiltmansverse energy, and miss-
ing transverse energy; LIMUON, which finds single and dimabjects; and LITRACK,
which makes a trigger decision based only on the XTRP tragkimdition, such as for
tracks with high transverse momentum. The decisions froch sabprocess are then sent
to the Global Level-1 hardware which makes a final L1 deci®iased on AND/OR com-
binations of the different subprocesses. In the case of g tHedevent is then buffered for

analysis at Level-2.

Level-2

The Level-2 (L2) is an asynchronous combination of hardvesn@ software triggers.
The average L2 processing time~s30 ps, with a L2A rate of about 600 Hz based on the
time needed by the Level-3 trigger. The L2 processing of @amekegins as soon as the
event is written to a L2 buffer. There are only four L2 buffessd while the data in one
of the buffers is still being analyzed that buffer cannot bedifor new events. Deadtime
occurs when all four L2 buffers are filled simultaneouslyeTl? decision uses all of the
data used at L1 but at a higher precision; for example, the emtum resolution of the
XTRP tracks is improved. Additionally, L2 uses data from th&x3I silicon detector and

the electromagnetic shower max detectors.
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The data from SVX Il and the tracks from the XTRP are combindtiéSilicon Vertex
Tracker (SVT). In order to include silicon information, t&&/T must be able to quickly
reconstruct 2-D tracks with an accuracy comparable to thatfoll offline analysis. This
is particularly important for findingy hadrons; these hadrons have a relatively long lifetime
(~ 10712 s), and those generated at CDF Il have enough momentum thatythieally
travel a few millimeters before decaying. The daughteriglag of ab hadron will be
displaced from the primary vertex of the interaction andthave a large impact parameter
do. The SVT is the first trigger in a hadronic experiment capablprecisely measuring
and selecting on the impact parameter of tracks. This glidis substantially increased the
b physics reach of the CDF Il detector.

The architecture of the SVT trigger is shown in Fig. 3.10. Tin& step of the SVT
is to read out the information from the SVX Il and run that imf@tion through a Hit
Finder. The Hit Finder looks for clusters of SVX strips régreng a hit and finds the
centroid of each cluster, which is the most probable tratiraection point. The cluster
information goes to the Associative Memory chips, whichtagnpatterns of valid particle
trajectories or “roads.” The track information from the XkTalso taken into account,
and the track candidates are checked against all possititgnm If the track candidate
matches a pattern, the road is then sent on to the Hit Buffee HihBuffer collects the
necessary track information for each road (four SVX Il hitsl awo XFT measurements)
and sends it on to the Track Fitter. Here each road is modatbdainear approximation,

which is then used to apply the L2 trigger selection.
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The shower max detectors are used to reduce the triggemraggettrons and photons
by requiring a cluster above a threshold (XCES). This redulcesbackground from a
single photomultiplier tube discharge, and improves tiseltgion of matching a track to a
calorimeter wedge. The Level-2 Cluster Finder (L2CAL) redutte trigger rate for jets.
The L1CAL considers information from each calorimeter toweparately, although jets
are not usually contained within a single calorimeter toweithe trigger threshold must be
set lower for the L1 trigger to be efficient. At L2, continuaegjions of calorimeter towers
are combined to form clusters, allowing a higher triggertoube applied to the cluster’s
total transverse energy.

All of the L2 information, from the SVT, track and muon infoation, XCES, and
L2CAL, is passed on to the Global L2 decision making hardwéHran event is accepted

(L2A), the full detector is read out for that event.

Level-3

In order to decrease the time required to make a decisiorl, thend L2 triggers use
only a small predefined subset of the event data. Pending atb2Aull event data is stored
on several buffers. After a L2A, the stored data is retridwethe Event Builder. The Event
Builder is a small farm of Scanner CPUs which put together thgrfrented event data and
pass the entire event along to the Level-3 (L3) trigger farm.

The L3 farm is made of 16 subfarms; each subfarm consists-@blirocessing nodes

and one converter node. A converter node receives the exentthe Event Builder and
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distributes the event to the next available processor suitdarm. Each converter node has
multiple event buffers, so it can receive a new event whilkistthe process of distribut-
ing another. The processor nodes are PCs running L3 recotistricode, which fully
reconstructs the event and checks all possible triggespmsfore making the final trigger
decision. Rejected events are discarded, while acceptedseare sent to the Consumer
Server Logger (CSL). The CSL writes the event data to disk whevél soon (in about
24 hours) be transferred to tape. The CSL also distributesadl fnaction of events to the

online consumer monitoring programs which verify data gual
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Figure 3.9: Block diagram of the CDF Il trigger system, for Lel/@nd
Level 2 only. The CLC and TOF triggers are not shown here.
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Chapter 4

Data and Monte Carlo Samples

4.1 Data Reconstruction

4.1.1 Trigger Paths

Each event accepted after Level-3 trigger reconstructaomias with it a history of
the trigger requirements it satisifed at each trigger leyel event is written to a specific
data stream depending on which trigger requirements itluli\ typical store of protons
and antiprotons in the Tevatron lasts around 24 hours. Duhat time, the luminosity
decreases from an initial value 6f250x 10°0s™1 cm2 to ~ 40x 103° st cm=2. The
trigger system is designed to avoid high deadtime at higlriasities, but as the luminosity
decreases, the trigger rates decrease and more triggewxiddmtéecomes available. Many
clever ideas have gone into improving trigger performanbéencollecting as much data

as possible. One method is defining several trigger paths sintilar requirements; one
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with stricter requirements is used at high luminositiesrtotithe number of events passing,
while one with looser requirements is used at lower lumitmesi Another method in use at
CDF 1l is prescaling high rate triggers; for example, a presso&10 on a L2 trigger path
means that for every 11 events that pass on that trigger path 40 are rejected and the
11th is accepted. As the luminosity decreases, the presasaelaxed.

When performing an analysis, we find the trigger path on whi@nts pertinent to
our analysis would be accepted and then reconstruct evelyténahe corresponding data
stream. This prevents every analysis from running analysite over the entire CDF I
dataset. The8** analysis, which reconstructs two differeBt decay chains, uses two
trigger paths: thel /@ dimuon trigger and the hadronic two displaced track SVTgeiy
The X, analysis also uses the hadronic two displaced track SV@erig

The J/@ dimuon trigger [53] searches for two tracks with > 1.5 GeV/c match-
ing to stubs in the muon chambers at Level-1. A maximum ogeangle ofA@ < 135°
between the two tracks is also enforced at the trigger le&eLevel-2, the tracks are re-
quired to have opposite charge and to form a transverse massich that 15 < my <
3.25 GeV/c?. At Level-3 the invariant dimuon mass is required to be in the range
2.85< m< 3.25 GeV/c?. This is a low rate trigger because of its clean dimuon signal

Theb hadronic trigger relies on the SVT described in Sec. 3.2@date two tracks with
large impact parameters, indicating they are displaced tite primary vertex. This can
be a very high rate trigger, especially at high luminosiig®re there are many secondary

tracks present. Thus three separate trigger paths havéodedewith different prescales:
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the nominal B_.CHARM), the low pt (B_.CHARM.LOAPT), and the highpt (B_.CHARMHI GHPT)

[54]. The requirements for each path are outlined in App. A.

4.1.2 Offline Track Reconstruction

As explained in Sec. 3.2.1, charged particles in the CDF ¢kiray volume move with
helical trajectories. CDF Il primarily uses a cylindricalazdinate system with theaxis
along the nominal beamline. The transverse plgng) is perpendicular to the-axis.

There are five track parameters used at CDF Il to describec|gaitajectories:

c= 2—1p, half-curvature of the track, whemis the radius of the circle made by a

projection of the trajectory into the transverse plane.

do, signed impact parameter of the track (the distance of stasgproach to the

primary vertex).

Zp, Z-position of a track at its point of closest approach to thempry vertex.

@o, azimuthal angle of the track at its point of closest appndadhe primary vertex.

cotB, cotangent of the polar angBeat the point of closest approach to the primary

vertex.
Other useful quantities are:

e y=tanh 1B, wherep = v/c (particle velocity divided by the speed of light), is the
relativistic rapidity.
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e n = tanh (cosd), pseudorapidity, is a good approximation to the true rapigli

e pr = psing, transverse momentum (component of the particle’s momeryto-

jected onto the transverse plane).

e L,y, distance the particle travels from the primary vertex attlansverse plane before

decaying.

o Ct= LXy%C, wherem is the mass of the particle ardis the speed of light, is the

proper decay length of the particle.

Tracks are reconstructed using data taken by the COT andrsiliacking systems.
Because the COT is at a larger radius from the interaction ok density is lower there
than in the silicon. Thus track reconstruction begins biog for clusters of hits in the
COT. The hits are then linked into straight segments, and ¢gensnts are joined into
tracks. Tracking is done in the silicon using the COT trackseexs. A “window” is
defined using the point of a COT track’s intersection with tiéeanost layer of silicon,
and all silicon hits within that window are attached to the Q@ck one at a time with a
fit performed in each case. The output of this fit is used to dedimvindow for the next
layer of silicon, and the process repeats until all layeveheeen searched. It is possible to
have multiple tracks resulting from one COT seed track iftéa@tes more than one valid
combination of silicon hits. The best one is chosen basehexttof the fit and the number

of attached silicon hits. This is referred to as “Outsidéttacking.

66



There will still be some unattached silicon hits after all C&8ed tracks have been
attached to silicon hits. A standalone silicon trackingoalipm has been developed to per-
form track reconstruction using these hits [55], which a#ipularly useful in the forward
region not covered by the COT. The full list of requirementsfdefault good quality track

(def Tracks) are listed in App. B.1.

4.1.3 Track Refitting

The tracks reconstructed from the detector informatiomateready to be used in an
analysis until several additional effects are considered.

The first effect is Multiple Coulomb Scattering (MCS) in the CQdlume. This is a
statistical description of the scattering angle of a pkrts a result of many small interac-
tions with atomic electrons. These interactions have thst ingpact on incoming particles
with low energy. For reconstructed COT tracks, not accogrfion MCS results in an un-
derestimation of the errors on track measurements. To adiwe MCS, the elements of
the track covariance matrix must be rescaled as reportedfirj5&¢.

The second effect is the energy loss of a particle due toaaotens with both the active
and passive materials in a detector. As the particle losegygrits momentum decreases,
and thus the curvature of the track changes along the pgstighth. The previous track
reconstruction assumed the same curvature along the patiie The energy loss per unit
length in a material is dependent on the type of particle dé&iacked, as the interaction

cross-sections change for different particles. The traclst be refit taking this into con-
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sideration. The refit is performed separately for pion, kaor muon track hypotheses
using a Kalman fitter [55]. Ref. [56] also makes a measuremktitcomagnetic field in-
side the tracking volume and a description of the silicomgetny, both of which contribute

to track refitting.

4.1.4 The Universal Finder

Tracks are combined to reconstruct particle decays usirmyeamnt reconstruction pack-
age. The analyses in this thesis use the Universal Findens&tiction package [57]. This
is an object-oriented program in which each track is comsidlan “object” with properties
such as momentum and mass. The Universal Finder recorssthectandidates in a decay
from the bottom up. For example, the det® — J/WK* with J/@ — p*u~ begins by
finding two track objects which satisfy all muon criteria.€linacks are combined to form a
J/y candidate, which must satisfy its own set of selection @atelhe program then finds
a track which satisfies the criteria for the kaon, and contbthat with thel/@. Finally,
the kaon and /| are reconstructed asBa candidate.

For both theB** and Z, analyses, no particle identification information is used fo
the tracks. Thus, all particle hypotheses consistent wighceindidate decay structure are
attempted at each step. In the example above, while segrfdria kaon to reconstruct the

B*, all tracks consistent with th&/) decay vertex are assumed to be kaons.

lUnless otherwise noted, any reference to a specific chaage snplies the charge conjugate state as
well.
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4.2 Monte Carlo Generation

All Monte Carlo samples are generated in the CDF Il analysimémaork, and involve

the successive use of the following steps (performed bemfft executables):

e Event generation (cdfGen): This phase begins with an event generator which cre-
ates an event. In our Monte Carlo samples, we use eitheptiteiiA [58] or
BCGener at or [59] software packages. After the generation, a decayegrpno runs
to decay the generated particles. For our Monte Carlo sampkesise either the
Evt Gen [60] or QQWbdul e [61] software packages. At this point we may force

our b hadrons to decay only in a specified channel, suclBas— J/YK* and
J/W— gy

e Detector simulation (cdfSim): This phase runs a detailed simulation of the CDF
Il detector using thesEANT software package [62]. The CDF Il detector simula-
tion operates at the level of hits for all detector composexcept the calorimetry,
where the shower evolution is computationally prohibitivéowever, the tracking,
especially the hits in the silicon detector, are simulateal wery detailed level, and
include the strip-to-strip variations in performance adl &e the generation of ran-
dom noise throughout the detector. The output of cdfSimddike the output from

the CDF Il data acquisition system.

e Trigger simulation (TrigSim++): The detector-like information is then fed into a

trigger emulation system developed at CDF. The TrigSim++sras a filter, and
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transmits only those Monte Carlo events which would passahktrigger system.

e Event reconstruction (ProductionExe): Events which pass the trigger simulation
are processed with the standard CDF Il production executabldis stage, the hits
in the muon chambers (CMU, CMP, and CMX) are reconstructed awkedi into
muon stubs. The hits in the COT are reconstructed and linkedd@®T tracks. The
COT tracks are then extrapolated and matched with the mubs.stine other tracks
are also extrapolated into the silicon detector whereasiliits are attached to these

tracks. The output of ProductionExe has the same formateafinidl CDF 1l data.

e Analysis reconstruction (Universal Finder): Finally, the Monte Carlo data is re-

constructed by the same analysis code used to reconsteudétday mode in data.

4.3 B* Data Samples

TheB** analysis is based on events collected by the CDF |l deteaior March 2002
to August 2004, for a total integrated luminosity of 3222 pb ! of data. The CDF
Il production version of this data is the 5.3 series, and theks are refit using CDF Il
software version 5.3.4. We require only basic good run stalong with the COT and
SVX offline good run bits set (see App. B.2 for a descriptionhaf good run criteria).
TheB** is reconstructed in tw8™ final statesB* — J/QK* with J/{ — utu~, and
B+ — DOt with D? — K*1tF. For both samples, the following procedure is applied to all

tracks. First, the tracks are refit according to the assuraeiicfe hypotheses to account
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for energy loss in the passive material of the detector. Risrdnalysis, we did not use
the LOO silicon hits. The detector alignment version is dpet through the calibration
pass number. For this analysis, we used calibration 16,stlthe final detector alignment
calibration. All tracks must pass tldef Tr acks requirements listed in App. B.1. Addition-

ally, tracks were required to haye > 400 MeV/c,

n| < 2.0, and at least 3 axial silicon
hits in different layers of the SVX. This analysis was oneld first to use the inside-out
standalone silicon-seeded tracks. Consequently, we shadgftect these tracks have on
the mass resolution, with the results documented in Seet.5.1

The decay reconstruction is performed by the Universaléfiniéscribed in Sec. 4.1.4.
Higher level candidates such as & andJ/y are reconstructed from tracks by fitting
the tracks for a common decay vertex, using tie&MFT C++ wrappeiVer t exFit [63].
Full fit results for each candidate are stored in the outpuDR@tuple [64]. The decay

reconstruction for each channel is described in detail t8$£3.1 and 4.3.2.

4.3.1 Reconstruction oB* — J/PK=*

TheJ/y dataset is based on the compressed dimuon trigger sampleTfaS dimuon
trigger requires two tracks witpr > 1.5 GeV/c which match to the stubs in the muon
chambers. The muons are constrained to pass through a copoimdrusingVer t exFi t .
Pairs of oppositely charged muons are then combined to fodmhpacandidate. At this
level the invariant mass of the i~ pair must lie between.9 and 33 GeV/c.

The kaon candidates are tracks with > 1.0 GeV/c that are consistent with tli¢y
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decay vertex. Therry~ invariant mass is constrained to tAéy mass [1] before deter-
mination of they™u~K decay point. The transverse momentum of the combined system
must satisfypr (U™~ K) > 4.0 GeV/c, and the invariant mass of thep K triplet must lie
between 4 and 57 GeV/¢.

For theB™ — J/WK™ decay channel, we use selection criteria optimized dutieg t
studies to develop a method of determining the flavoBY%imesons at production [65].
A full optimization based or8//S+ B, whereSis the number of signal events aBds
the number of background events, was performed as part ©sthdy. However, these
optimized cuts left a large amount of background underBhesignal peak. To reduce
the background level, we added an impact parameter cldo@)| < 50 um. The final
selection criteria are listed in Tab. 4.1.

We also made a high purity sample Bf* candidates by applying an isolation cut to
the B meson, which select® candidates with few surrounding tracks. For this sample,
we removed all candidates which passed Bheelection criteria but had more than one
surrounding track which passed tB& track selection criteria (listed in Tab. 5.1), using a
track pr cut of 400 MeV/c rather than 700 MeXt. The 400 MeV ¢ pr cut translates into
a stricter isolation cut which reduces the background c@mably. The mass distributions
for both the high and low purit™ — J/PK* samples are shown in Fig. 4.1 with a mass

fit (described below) superimposed.
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Table 4.1: Selection criteria for the ded&y — J/QWK* (J/P — pru).

Candidate Cut Value Units

Vi pr > 15 GeV/c

J/W Im(J/p) — 309688 < 80 MeV/&

K pr > 1.2 GeVic

B pr > 4.0 GeVic
Xgy < 15.0

ct/o(ct) > 4.0
|do| < 50 pm

m(B) € [5.24915.3092 GeV/c

B* — J/YK* Mass Fit

The invariant mass distribution &" — J/WK™ includes many partially and misrecon-
structed physics decays in the region belaw75GeV/c? [66]. The primary contribution
in this region is from the decaB™ — J/WK*0, when the pion fronK*® — Kt has not
been found. Due to these misreconstructed decays, thedefiand can only reach down
tom(J/PK*) = 5.17 GeV/&. Additionally, the Cabibbo suppressed de@&ly— J/ 1"
appears as a shoulder on the right side offie— J/WK™ peak, where it contributes to
both the signal and the right sideband. It corresponds4ét of theB™ — J/PK* sample,

as predicted from the ratio of branching ratios for thesedeoay modes [£]

2The quoted branching rati@&R(B™ — J/yrtt) andBR(B™ — J/WK™*) in Ref. [1] are(4.0+0.5) x 107°
and(1.00+0.04) x 103 respectively.
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The fit to the invarianB mass spectrum is a binned maximum likelihood fit. The
combinatorial background is modeled with a linear functenmd the signal peak is modeled
with two Gaussian distributions, a narrow one for € — J/PK* component and a
wide one for theB™ — J/ymt component. Thé&™ — J/Ymt component is offset from
Bt — J/YK™ by a fixed amount, and its size is fixed to 4% of the area of baghasi
Gaussians. The sum of these probability density functi®fi3Fs) is fit to data in the
region between 87 and 566 GeV/c?.

This fit is performed on both the low and high purBy — J/WK* samples shown in
Fig. 4.1. The results of these fits are given in Tab. 4.2. Bheass window used in Tab. 4.1
corresponds to Medsignal) + 3o(core) from Tab. 4.2. The sidebands to the left and right

of the signal are used as samples of combinatorial backdrasinlescribed in Sec. 6.1.3.

4.3.2 Reconstruction oB* — DOt

TheB hadronic dataset is based on the two displaced tracks trf@dd) sample. The
sample used for this analysis was skimmed from the full cesged dataset by the INFN
b physics group [67]. This skim used version 5.3.1 of the CDoftvgare and calibration
pass 13, and used only tBeCHARM trigger path (App. A). All tracks are required to be
def Tracks with a minimumpr > 400 MeV/c. The decayp® — K*1r is reconstructed
first. One of the tracks is required to be an SVT trigger traldhkere is no requirement on
the pr of each track, but the suipr of the two tracks must be greater thad ZeV/c. To

ensure the two tracks are from the same particle decay, stendie between them in the
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Table 4.2: The results of t®" — J/PK™ invariant mass fits shown in
Fig. 4.1. The values for means aadre all in units of GeYc?.

Parameter Low purity sample  High purity sample
Mean(signal) 2791+ 0.0003 52789+ 0.0004
o(core) 00096+ 0.0012 0008+ 0.001
Norm(core + tail) 619+14 185+0.6

o(tail) 0.018+0.002 001740.001
MeanB" — J/yrth) 5.33 (fixed) 533 (fixed)

NormB" — J/ym") 4% of Bt — J/YK* 4% of Bt — J/PYK™

o(Bt — J/yrrh) 0.0840.06 010+ 0.08
Comb. bkg. constant 1530130 442470
Comb. bkg. slope —206+ 25 —60+13
Number ofB mesons 6108 139 1819+-63
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plane must be less than 5 cm, thgless than 1.5, and thER, whereAR? = A¢? +An?, less
than 2. Before performing theer t exFi t, the mass of the combined tracks is required to
lie between 1.71 and.@2 GeV/c?. After theVert exFi t, the mass must be between 1.81
and 192 GeV/c? and pr(D°) > 2.4 GeV/c. Thex2, of theVert exFi t must be less than
50. There is no requirement on the impact parameters ofdle&dr but the distands,y of
theD® meson must be greater thai.1 cm. When reconstructing the deday — DOrt",
the invariant mass of thittis not constrained to the world avera§8 value. Thert" is
also required to be an SVT trigger track, and the sum of itsstrarse momentum with that
of the D is required to be greater tharb5GeV/c. Between thet™ and theD? candidates,
the requirements amz < 5, AQ < 3, andAR < 2. Before thé/ert exFi t , the mass of the
B* candidate must be between 4 anfl GeV/c?. After theVer t exFi t, the mass must be
between 4.5 and 6 Ge\¢? and pr(B*) > 5 GeV/c. TheLyy of the B* candidate must be
greater than-0.1 cm, and the impact parametds(B*)| < 0.02 cm. Again, the()z(y of the
Vert exFi t must be less than 50.

Our reconstruction of the skimmed sample with the Univelfsadler replicates the pre-
vious selection criteria with slightly tighter criteria @ome candidates. Since this analysis
does not depend on knowing the trigger efficiency, we onlygoer minimal trigger con-
firmation. Using the SVT information for the tracks, the comfation requirements on the
two triggering tracks are that they both hgve> 2.0 GeV/c and 12Qum < |dp| < 1 mm.
TheK and firstrtcandidates are required to have opposite charges and @ioesktto pass

through a common point usingr t exFi t . At this level the mass of thB° candidate must
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fall between 171 and 202 GeV/c?. The secondt candidate must be consistent with the
DO decay vertex. This time, thi€ttinvariant mass is constrained to the world averﬁ_ﬁe
mass [1] before determination of thkgtut decay vertex. The transverse momentum of the
combined system must satispy (Ktut) > 4.0 GeV/c, and the invariant mass of tKetrt
triplet must lie between.Z and 60 GeV/c.

Selection criteria for this decay channel were also optaliduring the studies to de-
velop a method of determining the flavorBf mesons at production [65]. A full optimiza-
tion based o18/+/S+ B was performed, and the final selection criteria are listékhin 4.3.

As for theB™ — J/YK™ sample, we again use an isolation cut to select a high pBrity
sample. The invariar mass distributions for both the low and high purity samples a

shown in Fig. 4.2 with a mass fit (described below) superirados

B* — DO Mass Fit

The mass spectrum for ti— D°rt decay has a much more complicated shape than
that for theB — J/WK decay. TheB — DOnt spectrum contains contributions from the sig-
nal, the combinatorial background, and various partiatyonstructed or misreconstructed
B decays, some of which contribute under Bre> D°rt mass peak.

As the selection criteria foB — DPrmis taken from the optimization of Ref. [65], the
mass template for fitting th® — Dt mass spectrum is also taken from this analysis. The
template is documented in detail in Ref. [65], with the priyneomponents of the fit listed

below:
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Table 4.3: Selection criteria for the decBy — DOret (D — K*1tF).
The symbolrg denotes the pion from tH&" decay. The symbdlyy(B —
D) denotes the distance tBemeson traveled from th8 decay vertex in
the tranverse plane.

Candidate Cut Value Units
DO Im(D%) — 1864 <80 MeV/3
2
Xxy < 15.0
R pr > 1.0 GeV/c

AR(D?, 113) < 2.0

B pr > 4.0 GeV/c
|do| < 80 pm
2
Xgy < 15.0

Lyy/0(Lyy) > 6.0
Ly(B—D)>—150  pm

m(B) € [5.24175.315 GeV/Z@
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Single Gaussian for the decay signal peak.

Single Gaussian for the Cabibbo suppressed dBcayDOK.

Two-horn structure for partially and misreconstructedaysoof the formB — DX.

Decaying exponential for the combinatorial background.

Most of the parameters governing the partially and misrstanted decays are fixed based
on the results of a generithadron Monte Carlo simulation. Only the relative normaliza-
tions and the relative fraction of events in the two-horucture are allowed to float in
the fit. The slope of the exponential combinatorial backgmbis fixed to its value at the
high end of the mass plot, where combinatorial backgroumdidates. The Cabibbo sup-
pressed decaB™ — DPK* appears as a shoulder on the right side othe— DOrtt peak.
It corresponds te- 7% of theB+ — DOrt" sample, as predicted from the ratio of branching
ratios for these two decay modesJ1]in this fit, the width of theB* — D°K* peak is
constrained to 383 MeV/c, its normalization is given by the norm of tis" — DOK™*
peak multiplied by the ratio of branching ratios, and its meseoffset from the mean of the
B+ — DK peak by 6985 MeV/c?.

A binned maximum likelihood fit is performed to the low and Iigurity samples
shown in Fig. 4.2. The results of both fits are given in Tab. ##eB mass window shown

in Tab. 4.3 corresponds to Me@igna) + 2o(signal from Tab. 4.4. Due to the many

3The quoted branching rati®&R(B* — D°K*) andBR(B* — D°rt*) in Ref. [1] are(3.7+0.6) x 104
and(4.98+ 0.29) x 102 respectively.
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partially reconstructed decays present in the left sidépanly the upper mass sideband

region is used as a sample of combinatorial background.

4.4 B** Monte Carlo Samples

Monte Carlo samples are used for two purposes in this analisimeasure detector
resolution and createBi* signal template. The samples are described below.

To study detector resolution, we simulated a large samplBjoflecays using the
BCGener at or package to generate events and @¥bdul e package to decay events, all
in version 5.3.4 of the CDF |l software. The mass of Bjewas set to 5.733 Ge\¢?, and
the B; decayed with equal probability ®rmandB*mt. TheB; was also generated with zero
intrinsic width. The simulation reproduced tBé — J/WK ™, J/y — puy~ decay channel;
as this sample is only used to study detector effects it waseuwessary to also generate a
sample decaying viB" — DO,

A B** sample with much smaller statistics was produced usin@#Tei1A event gen-
erator. As with theBGener at or sample, theeYTHIA sample was produced only in the
Bt — J/YK™ decay mode. The yield & mesons fronB** decay was set to 20% [17].
The B** widths were set to 100 MeVZdor the broad states and 20 Me¥/for the narrow
states, but these widths were accidentally truncated ah8®avieV/c respectively. We

used the defaukYTHIA branching ratio,

BR(B; — Br)
BR(B; — B*)

=22
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Table 4.4: Results
Fig. 4.2.

of th&* — DOt invariant mass fits shown in

Fit parameter

Low purity sample High purity sample

Norm (signal) 72£1.0 229405

Mean (GeV/c?) 5.2783+0.0003 52781+ 0.0005

o (GeV/c?) 0.0184+0.0003 00191+ 0.0004

Comb. bkg. constant 2863 73+1

Comb. bkg. slope —0.98+0.11 —0.8+0.8
Two-horn structure

Norm 291+3 97+1

Frac in wide peak

Mean of wide peak

Offset of horns

Ratio of events in horns

o of wide peak

78002 (fixed)

26227 (fixed)

0393004 (fixed)

485+0.01

00380609 (fixed)

0678002 (fixed)
06227 (fixed)
M393004 (fixed)

0409+0.002

M380609 (fixed)

o of horns 00173066 (fixed) @M173066 (fixed)
All other misreconstructed decays

Norm 0741+ 0.004 Q762+ 0.007

Slope 198502 (fixed) 198502 (fixed)

Constant 531605 (fixed) 531605 (fixed)

Endpoint 525059 (fixed) 25059 (fixed)

Number ofB mesons

6868 99

2186+ 55
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which is approximately twice the ratio predicted by thedBe€. 2.4). Events were both
generated and decayed byTHIA. This sample was primarily used to fix a shape for the
B:*9 contribution in the fit to data. For this sample we also chddke agreement between
data and Monte Carlo, although such agreement is not imgddaestimating theB;*°
shape. As evidenced by Fig. 4.3, which shows a comparisdre® pr spectrum between

theJ/YK data and Monte Carlo, the agreement is quite good.

Table 4.5:B** and B{* input parameters for theyTHIA Monte Carlo
sample.

Name Mass (GeVA) Width (MeV/c?d)  Decay

B 5.738 50 (Bm)
B; 5.757 50 (B*T)
B1 5.719 5 (B*T)
B 5.733 5 (B, B m)
B, 5.85 5 (BK,B*K)
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Figure 4.1: Invariant mass of the'u K* candidates. The top plot
shows candidates from the selection criteria listed in #ab. The bot-
tom plot shows candidates after an additional isolationused to create

a high-purityB** sample. The mass fit shown is described in Sec. 4.3.1
with fit results given in Tab. 4.2.
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Figure 4.2: Invariant mass of th€rut candidates. The top plot shows
candidates from the selection criteria listed in Tab. 4.13e Dottom plot
shows candidates after an additional isolation cut, usedeate a high-
purity B** sample. The mass fit shown is described in Sec. 4.3.2 with fit
results given in Tab. 4.4.
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Figure 4.3: Comparison of thpr spectra forB™ — J/YK* (shown

in black with triangular markers) anBt — DOrtt (shown in red with
square markers) afté&® mass sideband subtraction. In blue with circu-
lar markers is ther for aPYTHIA Monte Carlo sample " — J/PK™
events. All have been normalized to the same numbBmoeésons. There
is good agreement between tBé — J/YK* data and Monte Carlo;
however, théB pr spectrum is quite different between e — J/PK+
andBt — DOrt* data at lowB pr values.
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4.5 %, Data Sample

The %, analysis is based on events collected by the CDF |l deteatar Mlarch 2002
to February 2006, for a total integrated luminosity of 16760 pb* of data. The CDF I
production version of this data is the 5.3 series, and tlek$rare refit using version 6.3.4
of the CDF Il software.

The %, search is performed on a sample/mg — N1 events collected from the
compresse® hadronic two displaced tracks trigger dataset. This samagreconstructed
with loose selection criteria, and events which passecdtthesdiminary selection cuts were
saved to a separate dataset and reconstructed later wighstnioigent requirements. For the
initial loose selection, the selection module looped okezé tracks, assumed to be proton,
kaon, and pion candidates, to bul\d candidates. For this reconstruction, all tracks had to
pass thelef Tr acks requirements. To save computing time no track refitting veaifopmed
during this stage. In addition to tilef Tr acks requirements, th&¢ candidate tracks must
all have at least 3 axial silicon hits in different layersloé SVX Il andpr > 400 MeV/c.
The proton candidate was required to have transverse mamaygreater than that of the
pion candidate track to suppress fake combinations. The absolute value of the impact
parameter of each track was required to be less than 0.2 ceapdsition of the primary
vertex was determined from the average beamline positidtheaveragey of all three
tracks. The selection criteria are summarized in Tab. 4.6.

Thus selected, the three tracks were fit for a common vertexg¥er t exFi t [63]. If

the fit converged, the following cuts were applied to fjecandidate:
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Table 4.6:A\f — pK~ 1t candidate selection criteria during the prelimi-
nary data reduction step.

Selection criteria foNd — pK™—Tt"

def Tracks collection
Number of silicorr@ hits > 3
|do| < 0.2 cm

pt > 400 MeV/c

pr(p) > pr(m")

Zav = (20(P) + 20(K™) +20(1t")) /3

o X3 <49

e Lyy>0.02cm

e pr(pKm) >4 GeV/c

o |m(pKT) — m(AL)ppg| < 220 MeV/c?

If the above criteria were satisfied the program enteredadbp dver the fourth track. The
fourth track received a special treatment. First, we chedkehis track is associated with
a muon. If the fourth track happened to be a muon, a muon masghgsis was assumed
for that track; otherwise, the pion mass was assumed. Asthge, we required that 2 out
of the 4 tracks within & pKm)1t candidate matched the online SVT trigger tracks. We also

confirmedB_CHARMtrigger cuts on online and offline measured track paramelamely:

e for each track:
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- X8 <25
- pr>2GeV/c

— 0.0120< |dg| < 0.1 cm
e for the pair:

— opposite charged tracks
— |Az| <5¢cm
— 2° < |Ago| < 135°
— pr1+Ppr2>5GeV/c
— Lxyy>0.02cm
As a final step of the procedure, the four trd&% candidates were fit for a common

vertex, which required a 1-track vertex constraint betwiben\{ candidate and\ pion

candidate. The following cuts were required for the eveltg@ccepted:
¢ 3-dimensionak? of 1-track vertex fit less than 30

m(pKm) < 7.5 GeV/c? (if fourth track is a muon)

4.8 < m(pKrmm) < 7.0 GeV/c? (if fourth track is not a muon)

pr(pKmi+track) > 5 GeV/c

—0.007 < ct(A{ « AD) < 0.028 cm ¢t of the A calculated from thé\D vertex)
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o Ly(AD) >0.02cm

All events which passed this reconstruction were saved kinansed sample and used
in the Z, analysis, where more stringent cuts are applied to reamtsﬂne/\g candidate.
The Universal Finder reconstruction uses all availableail hits, including the LOO lay-
ers. Instead of using the average beamline position to déimerimary vertex of the
interaction, we use a method of determining the primaryexeon an event-by-event ba-
sis [68]. This algorithm begins with the average beamlinsitmm, and then performs
a three-dimensionat TvMFT fit to all good tracks to determine the exact location of the
primary vertex. We also use only runs which pass the goodriteria listed in App. B.2.

In reconstructing the decay) — A{ T andA{ — pK~Tt", the proton from the\S
decay and thet from the/\g decay are most likely to satisfy the displaced track trigger
requirements. Therefore, we require that both must tmve 2 GeV/c, while theK™
andtt™ havepr > 0.5 GeV/c to ensure well-understood tracking efficiency. Once/tie
tracks are selected \&rt exFi t is performed to constrain the tracks to a common vertex.

If this fit converges, the following cuts are applied to fkg candidate:
* XZy <30
e pr(pKm) > 4.3 GeV/c
e 2.269< m(pKm) < 2.301 GeV/c?

If the above criteria are satisified, the program enters p meer the fourth track. This
track, assumed to be a pion candidate, must againded3s acks requirements and have
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pr > 2.0 GeV/c. AnotherVertexFit constrains this track along with the previopKrt
candidate vertex to form th& candidate vertex. For this fit, the mass of g€ candidate

is constrained to the world averafg mass [1]. The requirements on th% candidate are:
° )()2(y <30

4.8 < m(pKrum) < 7.0 GeV/c?

pr(pKmm) > 6.0 GeV/c

e —0.007< ct(A{ « AD) < 0.028 cm

ct(pKrut) > 0.025 cm

These are still not the final analysis cuts. Fortunately,/hﬁisample has large statistics
and all selection cuts may be optimized using as a figure oftr8¢(/S+ B, where both
the signal yieldS and the background yield in the signal regiBrcome from the fit of
an experimental data mass spectrum to a function developRefl [69]. We also add a
standard cut on thag Vert exFi t probability to be above.Q%. The final cuts determined

by this optimization and applied in this analysis are ligtediab. 4.7.

A — ASTC Mass Fit

The invariant mass distribution & T~ candidates is shown in Fig. 4.4 overlaid with
a binned maximum likelihood fit, with a cle&? — A{ T signal at the expectetl) mass.
The/\g mass fit is described in detail in Ref. [70]. The primary congrus are:
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Table 4.7: Selection criteria determined ftﬁ reconstruction.

Variable Cut value
pr(Tg,) > 2 GeV/c
pr(p) > 2 GeV/c
pr(p) > pr(1T)
pr(K7) > 0.5GeV/c
pr(mh) > 0.5 GeV/c
ct(AD) > 250um
ct(AD) /0t > 10
|do(AD)] < 80um
Ct(AE — AD) > —70um
ct(AE — AD) <200um

Im(pK=1t") —m(A$)ppg < 16 MeV/c?
pr(AD) > 6.0 GeV/c
pr(Ad) > 4.5 GeV/c

Prob(x3p) of AQ vertex fit > 0.1%
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Figure 4.4: Fit to the invariant mass spectrum ofMEecandidates from
Ref. [70]. The black points are the data points while the soliict line
is the total fit. The individual background components astetl in the

legend.

e TheAQ — A{TT signal.

Fully reconstructed\g decays other thaf T (e.g./\g — NKT).
Partially reconstructedg decays. These are primarily semileptong:decays.
Partially and fully reconstructel mesons which pass tie! T selection criteria.

Combinatorial background.

The combinatorial background is modeled with an exponliytiecreasing function. All

other components are represented in the fit by fixed shapeeddérom generido Monte

Carlo simulations. Within the‘\g baryon andB meson groups of shapes, the normal-

92



izations are constrained by Gaussian terms to branchimgsrtitat are either measured
(for B meson decays) or theoretical predictions Qf(grdecays). The branching ratios of
many yet-unobservedg decay modes are extrapolated fchR(/\g — Ad1T) [71] and
BR(/\g — NST10) [72] using the ratios of branching ratios in analogd@¥sdecays [1];
factorization is assumed in two-bobtly— c decays 07\8. In the fit, thel\g components are
normalized relative to thA&2 — A{ 1T signal. To normalize th& meson components, we
explicitly reconstruct &% — (K-t 1t™)mr signal in theAl T sample by replacing the
proton mass hypothesis with the pion mass hypothesis. AsrshioFig. 4.5, the resulting
yield is N(I§°) = 774+ 72 (stat.) events. We scale this number by the ratio dB alécays
into four tracks observed in the Monte Carlo simulation to sheset which results in a
(K—mtrmth) T signature; this ratio is found to be7b [1]. The fit to the invarianf\ Tt
mass distribution results in 312562 (stat.)/\g — A1 candidates. In thé\g signal re-
gion of [5.565, 5.670] GeYc?, there is a total of 35380 candidates. Of these, 318080
(stat.) are from\g decays, 26&- 20 (stat.) fromB meson decays, and 1265 (stat.) from

A combinatorial candidates.

4.6 2, Monte Carlo Samples

Monte Carlo samples serve two purposes inIjanalysis: to measure the detector

resolution for thexy, signal and to create templates &y background contributions. The
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Figure 4.5: The fit of the invariant mass Bf — K3 candidates. This
distribution is computed from th&Z tmass distribution where the mass
of the proton candidate track, froAf’ — pKrt, has been replaced by the
mass of a pion.

different samples and their uses are listed briefly below.

e VariousBGener at or B samples: These samples contain many diffeBxhtcays and
are reconstructed a\ﬁ to search for additional backgrounds in figmass difference

distribution, as described in Sec. 6.1.3.

° /\8 — A{TC sample: This sample was generated wittTHIA forcing the decays
N — N{Tr andA$ — pKmth, with some of the\D produced by, decay. This
particular sample only producé}ﬁ pairs through flavor creation (Fig. 2.1). The
PYTHIA default pt spectrum ofb baryons was used for generation, so the sample
must be reweighted fot\g pt as described in Ref. [73]. This sample is used to
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determine the‘\g hadronization component of t¥g background, also described in

Sec. 6.1.3.

° >y — /\gnsignal sample: This sample was generated witlHIA forcing the decay
>h — /\gn with zero intrinsic width for thexy states, and then forcing the decays
A — NS andA$ — pK-mt. This sample also only produckb pairs through
flavor creation. Thept spectrum ofb baryons in the generation was corrected in
accordance with Ref. [73]. This sample is used to measuretdeteesolution as

described in Sec. 6.1.5.

/\8 reconstruction of these Monte Carlo samples is performeutivé Universal Finder

using the selection criteria listed in Tab. 4.7.

4.6.1 Datato Monte Carlo Comparisons

To estimate the&, background from hadronization tracks around promgibaryons
we use the’\g — AT PYTHIA sample, as explained in Sec. 6.1.3. For this purpose, the
Monte Carlo sample must accurately model data. We compaagiieement between the
data and the Monte Carlo sample for kinematic quantitiese)f\ﬂnandidate and the tracks
surrounding thef\g. The Monte Carlo sample does not contain combinatorial backgl
or B meson contamination, while the data has both. We can salth@ecombinatorial
background from the kinematic distributions in data by gdime high massé\g sideband
as a sample of pure combinatorial background. There is nplsimay to remove th&
meson contribution, but as this contribution is smalli0%) we do not correct for it.
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The PYTHIA default fragmentation andg pt spectrum were used in the generation.
The default/\g pr spectrum in Monte Carlo has more high momenmﬁmandidates
than seen in the data sample, so we must reweight the Monte @adchieve the cor-
rect/\g pt spectrum. To do this, we first normalize the Monte Carlo to #maes number
of /\8 as in data. Then we plot the ratio of the dm%\pT histogram to the Monte Carlo
/\8 pt histogram and model this ratio by a linear function. The Mo@arlo sample is

reweighted according to the following procedure:
1. For each event, we find the value of the reweighting vagiéblthis case thﬁg pT).

2. The weight for this event is given by the value of the linkgaction at this value of

the reweighting variable.
3. When filling distributions, each event is weighted by thenbar calculated in (2).

We do not throw events away, but reweight all distributionghwevent-by-event weights.
The /\8 pt spectrum before and after reweighting are shown in Fig. Z6e linear fit
parameters are given in Tab. 4.8 (top).

The Monte Carlo does not reproduce the data well for the satke around the\{
candidate, as shown in Fig. 4.7. Thus we must also reweighivibnte Carlo for the
track pr spectrum. Track reweighting is performed in the same Way)lathfa/\g pr, by
plotting the ratio of data to Monte Carlo in bins of trapk. The fit parameters are given
in Tab. 4.8 (bottom). After applying this weight to the remag track histograms, the

agreement between track quantities in data and Monte Cactonfoes quite good. Figs. 4.7
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through 4.13 show data to Monte Carlo comparisons for trachtjies both before and
after reweighting for the traclpr. All distributions have been reweighted fmg pT as
well. The Monte Carlo has been normalized to have the same eruuib\g candidates
as found in data. The kinematic quantitip§§' and p{_e' are, respectively, the tranverse
and longitudinal components of the track momentum relati\Me/\g momentum vector.
After reweighting, the data to Monte Carlo ratio for th% hadronizationQ distributions
(Figs. 4.12 and 4.13) are consistent with straight lines-@9 rather thart-1. This is

consistent with 8 meson contribution of about 10% in the data.

Table 4.8: Parameter values for the linear functions useewteight the
Monte Carlo inl\g pr (top) and trackpr (bottom).

/\8 PT Parameter Value Error
Po 1.30 0.06
P1 ~0.025 0.004
Fit Prob. 38% —

Trackpr Parameter Value Error

Po 1.73 0.06
p1 —0.353 0.040
Fit Prob. 92% —
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after (right) reweighting foV\ﬁ pr. The linear fit to the left plot is used
as the function to reweight the Monte Carlo. The right plotvehagree-
ment with a straight line at +1.
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Chapter 5

B0 Measurement

5.1 Analysis Methodology

The B** analysis is based on events collected from March 2002 to su2@04, for a
total integrated luminosity of 378 20 pb ! of data. TheB**0 is reconstructed in tw&+
final statesB* — J/YK* andB* — DOret. The following sections describe tB&* recon-
struction, determination of thB** backgrounds, fitting procedure for tlB&* candidates,

and results of this search.

5.1.1 B** Reconstruction

The B** candidate is reconstructed using tracks in the vicinityhef teconstructe®
meson. All tracks around th® which satisfy the selection criteria are used to reconstruc

oneB**. The selection criteria on the extra track are almost idahfor the two decay
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channels. There is one extra cut made on the tracks iB theD°rt decay channel which
excludes tracks from misreconstruct@tidecays, as explained in Sec. 5.1.2. The selection
criteria on the extra track in the event, shown in Tab. 5.4 chiosen to ensure that the track
is prompt and associated with tlBemeson. For the high purity sample, as explained in
Sec. 4.3.1, an isolation cut was applied to select eventsandr®dy one track in the vicinity

of the B meson passes all the cuts in Tab. 5.1 including a Iqwezut of 400 MeV/c.

Table 5.1:B** selection criteria for tracks in the vicinity of tiemeson.
The final criteria is only for th&t — DOrt* decay channel.

Candidate Cut Value Units

track |do/0(do)| < 3.5
AR(B,track) < 0.7
|Az(B, track)| < 5.0 cm

pr > 0.7 GeV/c

Additional requirements foB+ — D°rtt channel

track m(D%track) — m(D°) < 0.142 GeV/c?

m(D%rack) — m(D°) > 0.148 GeV/c?

TheB** mass is calculated from the reconstruction of the extr&tnath the B meson.
TheB is not mass constrained before adding the extra track. Tomze the contribution
of the mass resolution of ea@1 candidate, we construct the mass difference distribution
Q = m(Bm) — m(B) — my, wherem(Brt) = m(B**). All B** mass distributions are shown as
Q distributions. TheQ distributions are fitted in the regid® € [0.0,2.0] GeV/c? although
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the narrowB** signal is expected only in the regi@he [0.2,0.4] GeV/c?.

5.1.2 B** Backgrounds

The combinatorial background in the signal region is edteahdy defining sideband
regions around thB mass peak. Distributions for tracks are filled separatelydfmesons
which fall in the mass sideband regions thanBanesons in the mass signal region. Those
distributions from tracks arounl mesons in the mass sidebands are referred to as “side-
band” distributions, and represent pure combinatoriakemund. These sideband distri-
butions must be multiplied by an appropriate scale factaefwesent the combinatorial
background in the signal region. This scale factor is the @tcombinatorial events in the
signal region to combinatorial events in the sideband regiovhich is obtained from the
fit to the combinatorial background in timass fits described in Secs. 4.3.1 and 4.3.2.
The combinatorial background contributions are shown éfttiowing sections.

Only the combinatorial background may be so easily sepdrdtee remaining sources
of background are tracks from tiBhadronization, underlying events, pile-up events, and
even the widd** states. However, unlike the combinatorial backgroundsetmackground
sources are all independent of tBelecay mode. Thus, the shape of all these backgrounds

are constrained to be the same in both decay modes, as dekieriSec. 5.1.4.
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B* — J/WK™ Combinatorial Background

For theB™ — J/WK™ channel, the background is flat and the sidebands are easy to
model. The signal region is defined agJ/WYK™) € [5.24915.3092 GeV/c?, which
corresponds to Medsignal) + 3o(core) from Tab. 4.2. The low sideband is defined as
m(J/WK™) € [5.17,5.21904 GeV/c?, where the high boundary is taken as M¢signal) —
3o(tail). The high sideband is defined a$J /WK *) € [5.339415.66] GeV/c?, where the
lower edge is taken as Me@" — J/ymt") +o(BT — J/Qrh).

Binned minimuny? fits to the sideband distributions for the low and high pusiayn-
ples are shown in Fig. 5.1. The low purity sample sidebandiodeted by a wide Gaussian

plus a function of the form
F(Qa,p)=Q% e %P (5.1)

This parameterization was chosen because it describesthveethverall shape of th®
distribution, which is zero af) = 0, rises quickly, and drops off exponentially. The high
purity sample is modeled by only Eq. (5.1), as there are taoefeents to discern any other
structure. Due to a lack of events in the bins near zero, anghaard fluctuation of events
around 03 GeV/c?, the high purity background events are not as well-modesatialow
purity background events. An unbinned fit to the high puritgrgs, shown in Fig. 5.17,

performs slightly better than the binned fit.
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B+ — DOt Combinatorial Background

Sidebands are more difficult to define for e — DOt channel. Although the combi-
natorial background is modeled by a relatively simple exgmdial function, the area below
the signal peak in mass includes many partially and misitcoctedB decays. The re-
gion above the peak, however, is virtually pure combinatdrackground. Therefore, we
use only the upper mass sideband to estimate the combaddtaxkground contribution.
The signal region is defined agD°r*) € [5.2417,5.315 GeV/c?, which corresponds to
Mean(signa) + 20(signa) from Tab. 4.4. The sideband region is definech#®°rt) e
[5.370296.0] GeV/c?, where the lower edge is taken as Mésignal) -+ 50(signal).

The Bt — J/YK™ combinatorial backgroun@ distribution is smooth, but the initial
B+ — DOrt" combinatorial backgroun@ distribution showed a small peak centere@at
0.145 GeV/é with a width of ~ 20 MeV/&, as shown in Fig. 5.2. Further investigation
revealed this peak is from decays Bt — D*~ 1", with D*~ — D%, where the pion
from D* decay is misreconstructed as the pion frBff decay. This source of background
may be eliminated by imposing a cut on the mass differenagdsst theD® and the extra
track added to th®°. This is the final criteria shown in Tab. 5.1. The resultingosih
sideband distributions for both low and high purity sampes shown in Fig. 5.3 with
binned minimumy? fits. The low purity sample sideband is modeled by a wide Ganss
plus Eq. (5.1). The high purity sample is modeled only by Bgl), as there are too few

events to discern any other structure.

106



[ B mass sideband in B - J/y K channel |
~ 180
L
>160
Q
0140
—
Q120
o
—100
80
60
40
20

x?=92.3/84=1.1
Fit Prob = 25%

Events

-------

X E - Y B— - 2.0
Q=m(Bn) - m(B)-mm (GeVic)
B mass sideband in B — J/y K channel |

70

60 { x?=95.9/74=1.3

50 + } Fit Prob = 4%
40
30

20

Events / (0.02 GeV/cz)

10

%

++ H“*

o T To 15 2.0
Q =m(Bn) - m(B) - m(m) (GeV/c?)

Figure 5.1: Binned minimuny? fit to the histogram filled from tracks
in the B mass sidebands for ti&" — J/WK™ channel. The top plot is
for the low purity sample while the bottom plot is for the highrity
sample. This shape, multiplied by a normalization factomprises the
combinatorial background component of the t@al fit.

o IIII|IIII|IIII|IIII|IIII|IIII|IIII|

107



B mass sideband in B — D° tchannel |

.01 GeV/c?

)

x?=91.4/84=1.1
Fit Prob = 27%

60

o

o
TTTTTTTT T T TTIT[TTT TIT T TTT[TITT]TT
I RN LR RN RN R AR

N
o

05 10 15 20
Q=m(Bm - m(B) - m(m) (GeV/c?)
Figure 5.2: Binned minimuny? fit to the histogram filled from tracks
in the B mass sidebands for B — DOt channel, before making the
final track cut listed in Tab. 5.1. The small peak atQ.145 GeV/é,

which is modeled here by a narrow Gaussian distributionyestd mis-
reconstructed* decays.

108



B mass sideband in B — D° ichannel |

)

N2180

%160 X?=92.9/85=1.1
(3140 Fit Prob = 26%
<120

60
40
20

Events / ( 0.
. A

¥ — 15 0
Q=m(Bn) - m(B)-mm (GeVic)

B mass sideband in B — D° tchannel |
45
40
35
30
25 l

20 0| ‘}
15 +
10 ; N +
5E {. i R
> il . . . . . . : ] L resonla Ll 9%t
%0 0.5 1.0 1.5 2.0
Q=m(Bm - m(B)-m(m (GeVicY)
Figure 5.3: Binned minimuny? fit to the histogram filled from tracks
in the B mass sidebands for ti&" — DOrt™ channel. The top plot is
for the low purity sample while the bottom plot is for the highrity

sample. This shape, multiplied by a normalization factomprises the
combinatorial background component of the t@al fit.

X2 =47.1/77=0.61
Fit Prob = 99%

Events / (0.02 GeV/c

'H }

109



5.1.3 Mass Resolution of Higim Tracks

As observed in Sec. 4.3, this analysis uses inside-out lamel silicon-seeded tracks.
It has been observed that tracks in the forward regionsgatvalues of) (|n| > 1.1), have
worse mass resolution than tracks in the central regionswatalues ofn (Jn| < 1.1). We
use therYTHIA Monte Carlo sample described in Sec. 4.4 to study the effebighfn
tracks on mass resolution in tB* mass difference measurement, and if mass resolution
could be improved by rejecting these tracks.

The effect of highn tracks on mass resolution may be seen in Fig. 5.4, which shows
the B mass in theeYTHIA Monte Carlo sample for kaons if| < 1.1 (left) versus kaons at
In| > 1.1 (right). The width of theB peak is nearly doubled when using only higlracks.
To find the impact on th&8"* mass difference measurement, we examine the detector res-
olution from theBGener at or Monte Carlo sample separately 8t pion candidates with
In| < 1.1 and|n| > 1.1. The plots for thd; — Brtdetector resolution are shown in Fig. 5.5
and for theB; — B*mtin Fig. 5.6. Tracks withn| < 1.1 are fit with the four Gaussian reso-
lution model described in Sec. 5.1.4. There are very fevkgat the highn region which
satisfy theB** track selection cuts, so these distributions are modeleddnygle Gaussian.
Fit parameters are shown in Tab. 5.2.

From the table it appears that for the few trackgrgt> 1.1 the mass resolution is
worse than for tracks df)| < 1.1. However, even the higin| tracks fall within the second
Gaussian of the full sample, so removing those tracks isxmeated to improve the mass

resolution. This expectation agrees with the fit paramdterthe tracks of lown; those fit
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Table 5.2:B** mass resolution, taken fromB&ener at or B**? Monte
Carlo sample, for high versus logtracks. The lown track distribution
is modeled by four Gaussians (top). Due to low statistics, highn

track distribution is modeled by a single Gaussian (bottom)

Parameter B; — BriDetector Resolution B5 — B*rtDetector Resolution

Tracks withjn| < 1.1

Mean 0012+0.02 —0.08+0.02
First Gauss. Const. 6030160 7160+ 90
First Gausso 2.80+0.05 311+0.03
Second Gauss. Const. 116060 610+ 90
Second Gaussi 54402 6.4+0.3
Third Gauss. Const. 4414 17+ 6
Third Gausso 13+1 1742
Fourth Gauss. Const. .8+0.3 12+0.3
Fourth Gausso 210+ 240 540+ 710
Fit Probability 2.5% 99%

Tracks withjn| > 1.1

Mean 12+0.5 0.11+05
First Gauss. Const. 02 20+2
First Gausso 6.3+0.4 54+0.3
Fit Probability 60% 29%
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parameters are identical within errors to the fit parametefab. 5.3, which uses tracks at
all values ofn.

Because we measure tlB* mass difference rather than tB&* mass directly, the
worsening of mass resolution due to including higtiacks has a negligible impact on this

analysis. Thus, we use tracks at all valueg of
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Figure 5.4: Invariant mass spectrunBf — J/QK ™ in aPYTHIA Monte
Carlo sample. The left plot uses only kaon trackfat 1.1, while the
right plot uses only kaon tracks &i| > 1.1. The mass resolution is
clearly worse when using only tracks at high
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Figure 5.5: Detector resolution of thB; — Bm decays from a
BGener at or B**® Monte Carlo sample. The left plot shows the reso-
lution using only tracks afn| < 1.1, while the right plot shows the res-
olution using only tracks ofn| > 1.1. The left plot is modeled by four
Gaussians while the right is modeled by a single Gaussiah, thve fit
parameters shown in Tab. 5.2.
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Figure 5.6: Detector resolution of thB; — B*m decays from a
BGener at or B**® Monte Carlo sample. The left plot shows the reso-
lution using only tracks afn| < 1.1, while the right plot shows the res-
olution using only tracks ofn| > 1.1. The left plot is modeled by four
Gaussians while the right is modeled by a single Gaussiah, thve fit
parameters shown in Tab. 5.2.

Mass Resolution Smearing due to Lost Photon

Another possible effect on the mass resolution is the lo#ssgbhoton emitted when the
B* decays tdy. This photon has very low energy (#8+0.35 MeV/c? [1]), but any miss-
ing energy in the reconstruction might cause a smearingeofébonstructe&** mass. To
check the magnitude of this effect, we again useBt& signalBGener at or Monte Carlo
sample described in Sec. 4.4. We reconstrudaWhich decay td*mtin two ways, as the
mass of thd8ry and as the mass only of tiBgt To avoid detector resolution effects, we use
the simulation mass and momenta for each particle ratharttieareconstructed mass and
momenta. We then plot the mass differemedBmy) — m(Br), shown in Fig. 5.7, to esti-
mate the smearing caused by the photon. This histogram ieregion 46.13 MeVK; the
default value fom(B*) — m(B) in the BGener at or decay table, and the root mean square

(RMS) is 14 MeV/c?. The RMS value gives an estimate of the actual smearing d@'the
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mass due to the loss of this photon; we see that it is expectaelaround % MeV/c?. We
account for this smearing by using a separate detectorutesolfunction forB** decays

throughB*, as described in Sec. 5.1.4.
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Figure 5.7: Mass difference from reconstructing the deBay- B*1t

as Bry and also without the photon &1, in the BGener at or Monte
Carlo sample. The mean of the histogram is BGener at or value for
m(B*) —m(B), and the root mean square (RMS) is an indication of smear-
ing caused by the loss of the photon during reconstruction.

5.1.4 B** Fit Description

We use two finaB™ decay states to increase tB& statistics; however, we do not
simply add theB** mass distributions for the two channels for several reasoine first is
the difference in background shapes; the combinatoridddracind for the two channels is

very different, both in shape and in the amount of such bakgst present in each channel,
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as shown in Sec. 5.1.2. The large background inJtheK channel would overwhelm the
signal in theDPmt channel if the events were merely added. The second reasdo wet
add the events is the difference in € pt spectrum between the two channels, as shown
in Fig. 4.3. At highpt, above about 10 GeV/c, the spectra for the two decay channels
agrees fairly well. Below 10 GeV/c, there is some discreparetyveen the two spectra,
which we attribute to the differing selection Bfevents by the dimuon and displaced track
triggers. Due to this discrepancy, we also did not constits@nnumber oB** events in
each channel to the same relative normalization.

While we do not add the two channels together directly, we niectively combine
them by fitting both simultaneously. The rest of this sectlescribes an unbinned maxi-

mum likelihood fit for bothB* samples simultaneously.

Detector Resolution

To determine th&) detector resolution, we look at the difference between #heeg
ated and reconstructd} mass in theBGener at or B**® Monte Carlo sample described in
Sec. 4.4. To account for the smearing of the lost photdsiidecays, the detector resolu-
tion is modeled separately f@&;, — BrtandB; — B*mtdecays, and the results are shown
in Fig. 5.8. We expect the distribution to be symmetric andteesd at zero. The large
tails of the distribution require a fit of more than one Gaaissand we use four Gaussians
constrained to have the same mean. The fit parameters are shdab. 5.3. The mean

of the B detector resolution model is consistent with zero, but teamforB* is offset
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Table 5.3: Fit parameters of th& — Bt (left) andB; — B*m (right)
detector resolutions shown in Fig. 5.8 modeled by four Gaass with
the means of the four Gaussians constrained to be the same.

Parameter B; — BrtDetector Resolution B; — B*1t Detector Resolution
Mean 00144-0.02 —0.08+0.02
First Gauss. Const. 6000160 7160+ 90
First Gausso 2.79+£0.05 311+0.03
Second Gauss. Const. 126060 630+ 81
Second Gaussr 54+0.2 6.4+0.3
Third Gauss. Const. 4812 17+ 6
Third Gausso 13+1 1742
Fourth Gauss. Const. .8+0.2 12+0.3
Fourth Gausso 200+90 50042000
Fit Probability 11% 99%

from zero by 4o0. Other than the mean, the parameters for each Gaussianrsisteat
betweerB andB* decays within errors, although tlB widths are always larger, by about
1 MeV/c? for the two central Gaussians.

Compared to the predicteBt* intrinsic width of 16 MeV/c?, the detector resolution
is a small effect. From Tab. 5.3, it is clear that the third &math Gaussians contribute
little to the overall detector resolution and have larg@asded uncertainties. These wider

Gaussians are based on tracks which are not well measureel detectore.g. have fewer
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COT or silicon hits. We expect the Monte Carlo will not acculamulate hits on the

edge of detector acceptance; in fact, even for the well-aredstracks the Monte Carlo
may underestimate the detector resolution slightly. Tioeege we use only the two central
Gaussians as a model for the detector resolution. This ddbalssian resolution function

is convoluted with a Breit-Wigner distribution to descriksch narronB** signal peak.
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= 8000 2
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Figure 5.8: The difference between the generated and reocotedB**
mass, when thB** is generated with an intrinsic width of zero, gives the
detector resolution in that decay channel. Detector réisolus shown
here for the decayB; — Brt(left) andB; — B*1t(right) in aBGener at or
Monte Carlo simulation. The histograms are modeled by foursSian
distributions constrained to have the same mean, with tipafameters
given in Tab. 5.3.

B** Fit Model

TheB** fitis performed using the RooFit infrastructure [74]. The RibbBrary works
within the ROOT environment and provides fitting tools sushpaecompiled PDFs to
model distributions of events. A RooFit model may be used ttope likelihood ory? fits,
produce plots, and generate simplistic, or “Toy,” Monte Gadmples for many different
studies. Th&** fit uses RooFit version 1.04.
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The expected signal structure for the narmiw peaks was described in Sec. 2.4. We
fit for three peaks, th&,; — Bm, B; — B*1, andB; — B*1t The latter two peaks are ex-
pected to overlap, given the theoretical mass different@d®nB, and B’ and intrinsic
width of the states. The signal structure must be identmab6thB™ decay chains. Due
to the low statistics of our sample, we fix the intrinsic widththe theoretical prediction
of 16 MeV/c? [8] for both B; and B5. We also found it necessary to constrain the normal-
ization of events in th&; — B*mtpeak relative to events in th& — Brtpeak. We use the

theoretical prediction,

BR(B; — Br)

~114+03
BR(B; — B*T)

described in Sec. 2.4. The wid* states should also be present, but we do not expect to
separate them from the background.

In order to perform the simultaneous fit to the sidebandBifidQ distributions of both
decay modes (a total of four histograms to fit simultanequsWg first perform a binned
minimum x? fit to the sideband distributions. This provides a good stgmpoint for the
unbinned maximum likelihood fit. These sideband fits are shimwFigs. 5.1 and 5.3. As
previously observed, thB™* signals and the non-combinatorial backgrounds are exgecte
to have the same shape for bd@h decay modes. We use this knowledge to reduce the
number of floating parameters in the simultaneous fit, bytecrg@nly oneB** signal PDF
and one non-combinatorial background PDF. We fit these PDRE®th Q distributions
simultaneously. The overall PDF normalization for eachneied is still allowed to float

separately. Thcﬁsg*0 contribution is also fixed in both shape and normalizatiamfithe
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PYTHIA Monte Carlo sample as described below, and is the same fodecty channels.
This contribution appears as a small, wide Gaussian to theflthe B** signal region.
TheB** signal PDF is the sum of PDFs for the three expected naBGwpeaks. Each
PDF consists of a Breit-Wigner convoluted with the double €3&an detector resolution
model. The width of the Breit-Wigner represents the intangidth of theB** states and
is fixed to the theoretical value of 16 MeV/c The non-combinatorial background PDF
which is fit to both decay channels consists of the functioBan(5.1), plus a wide Gaus-
sian distribution. The purpose of the added Gaussian isgorblihe wideB** states; the
Gaussian parameters are left floating in the fit but the numibevents is fixed to the same
number of events as in the narr®i* peaks. However, the wide Gaussian does not give
us any information about the wide states, as we do not knowcaohnect shape for the

non-combinatorial backgrounds.

By*9 Component

TheB:*? decays td3*K~; when the kaon is misreconstructed as a pion &€ con-
tributes to theB** distribution. ThePYTHIA Monte Carlo sample described in Sec. 4.4 is
used to determine the shape of this contribution. At the timeanalysis was performed,
only theng state had been observed [16, 17]. Thus the Monte Carlo samplaics only
B, — B(*)K decays, with th&:0 intrinsic width set to 5 Meyc?.

When the kaon is misreconstructed as a pionBanass peak becomes considerably

smeared, stretching out to a width €60 MeV/c?. Therefore, thé3%, appears in th&**
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distribution as a wide contribution betweéne [0.0,0.2] GeV/c. This is below our ex-
pectedB** signal region, but adds an extra component to the backgrdbuod to the low
statistics in the sample, and the small numbeBfevents expected in tH&* sample, we
model this contribution with a simple Gaussian distribatrather than using a more com-
plicated shape to describe the smearing. Byesignal should more correctly be modeled
by two distributions, one foB%, — BK decays and another f@, — B*K decays, with
the mean of th&*K peak fixed relative to thBK peak. With the statistics in the current
sample, there is little practical difference between fittineBZ* signal with a single Gaus-
sian or with a double Gaussian, as shown in Fig. 5.9. The @édBblussian shape, with the
parameter values given in Tab. 5.4, will be used to estinteystematic uncertainty due
to the B{* parameterization in Sec. 7.1. The single Gaussian is treutleshape used in
the fit to data, and its parameter values are given in Tab. 5.5.

The Q distribution of aIIBz‘;‘)O signal in therYTHIA Monte Carlo sample is shown in
Figure 5.10 with an unbinned maximum likelihood fit. TB& intrinsic width, which is
only 5 MeV/c? in this simulation, is constrained to be the same for alld¢lpeaks. The
B** wide states are modeled by a single wide Gaussian undertiesattarrow peaks, and

the BS* states are modeled by a single wide Gaussian atQovalues. The result of this

fit to all B

® signal is given in Tab. 5.5. The fit values for the nar®tV states agree well

with the input generation values.

120



Table 5.4: Parameter values from a double Gaussian fit BtheyTHIA
signal shown in Fig. 5.9. The parameters for the single Gandi are
given in Tab. 5.5.

Parameter Fit value Units

By, —» BK Qvalue  0238+£0.012 GeV/é
Bz, — BK width 29+13 MeV/c
B, — B*K Qvalue  0.192 (fixed) GeVfc
Bz, — B*K width 72+6 MeV/c

N(B:*)/N(B) 0.0031+0.0002

Table 5.5: Parameter values for a fit to tB& andB{* signal from a
PYTHIA Monte Carlo sample, with the input signal parameters given in
Tab. 4.5. TheQ values are the mass difference valu@= m(Brm) —
m(B) — my. The fit values of the broal8** andBZ* vary greatly from the
input values due to smearing during the reconstruction.

Parameter Fit value Input value  Units
B; Qvalue 02547+ 0.0003 0.2534 GeVk
B5 Q value 03148+ 0.0004 0.3134 GeVk
NarrowB* width ~ 5.0040.07 5 MeV/&

BroadB** Qvalue 0308+0.014 0.319 GeVk

BroadB** width 299+0.1 50 MeV/&
B:* Q value 0200+ 0.003 0.391  GeVk
B* width 69+ 4 5 MeV/c
N(B%*)/N(B) 0.00204 0.0002
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Figure 5.9: TheQ distribution of B states in &YTHIA Monte Carlo
sample. On the left, the distribution is modeled by a singée$3ian,
while on the right the distribution is modeled by a double &aan with
the mean of thd}, — B*K Gaussian fixed relative to the mean of the
By — BK Gaussian.
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Figure 5.10: The distribution of aIIBZ‘;)O states in theeYTHIA Monte
Carlo sample. Th&{* appears as a broad state at IQuwalues, drawn
here in magenta. The three narrow peaks modeled in blue arsvth

narrowB** states, while the broad excess underneath the narrow peaks
consists of the wid8** states.
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5.1.5 Tests of theB** Fit

To test the stability of our model we use Toy Monte Carlo saspieduced within
the RooFit infrastructure. Toy Monte Carlo samples are géeerdorough sampling of
the total fit PDF. They allows us to quickly generate similat statistically independent
datasets and exercise our fit over these samples. Using 608r Ty MC samples, we
evaluate the “pull” of each floating parameter in our fit. Thdl pn a parameteo is
defined as
_ Qinital — final (5.2)

pull(a)

Oq

wheredinita IS the parameter value input to the Toy MC when sampling ®@ndasina,
with errorag, is the value after the fit is performed to the Toy MC sample.déBned in
Eqg. (5.2), the pull for a stable parameter should have a waitsGian distribution centered
at zero. If there is any fit bias, the mean of the pull distitoutwill be offset from zero.

If the statistical errors on the parameter are being undeover-estimated, the of the
pull distribution will be correspondingly greater or lebsih one. If the parameter causes
fit instabilities, the pull distribution will have large nggaussian tails.

The pulls for all floating fit parameters are shown in Figsl5ahd 5.12. Due to the
large number of floating parameters, some parameters dedmnsteow significant devia-
tions from the unit Gaussian. However, the purpose of thayais is to measure thg"*
masses. Thus itis only important to measure any fit bias oBtla@dB; masses. The pulls
for the B, andB; masses are shown separately in Fig. 5.12. FoBih¢he mean value is

over 8 standard deviations away from zero and the width igdri8iard deviations below 1.
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For theB; the mean value is almost 7 standard deviations from zerorendidth is over
23 standard deviations above 1. To evaluate the actual §f i@ plot the differences for
both theB; andB; masses; this is identical to the pull calculation excepttiadifference
is not divided by the error on the parameter. The differenis&idutions with a Gaussian
fit are given in Fig. 5.13. The mean of the Gaussians show tlualaalue of the fit bias
is only 022 MeV/c? for By and —0.34 MeV/c? for Bs. These values are insignificant
compared to the statistical error we expect for this measent, so we correct for the fit
bias by adding the appropriate amount to the measured vafues B; andB; masses.
We also take corrective factors on the statistical errorgatifi quantities (0.91 for thB;
mass and 1.22 for thg; mass) to put the statistical error back in the one standafietien
region. The pulls for both masses after these correctienstaown in Fig. 5.14, and these

corrections will be applied to the measured values in data.
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Figure 5.11: Toy Monte Carlo pulls for all floating parameterthe B**
fit except theB; andB; masses, which are shown separately in Fig. 5.12.
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Figure 5.12: Toy Monte Carlo pulls for thi&y mass (left) and thB; mass
(right) fit parameters. The means and widths of both pullridlistions
show significant deviations from zero and one respectively.
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Figure 5.13: Raw differences between the measured and tara {foy
Monte Carlo) values for thB; mass (left) and th&; mass (right). The
means of the Gaussians measure the actual fit bias to be @220:84
MeV/c? for B; andB; respectively.
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Figure 5.14: Toy Monte Carlo pulls for th&; mass (left) and thé;
mass (right) after fit bias corrections. The means and widthise pull
distributions now agree with zero and one respectively.
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5.2 Result of theB** Fit to Data

The result of the simultaneous unbinned maximum likelihibéor the narrowB**
states is given in Tab. 5.6 for both the low and high puBtgamples. The result of the
unbinned fit to all four histograms is shown in Figs. 5.15 arid%or the low purity sample,
and Figs. 5.17 and 5.18 for the high purity sample. In thestspihex? value is calculated
between a binned histogram of the data and the value of theRBI- at the center of each

bin in a reduced range @ < [0.0,0.8] GeV/c?.

Table 5.6: Result of the simultaneous fit to the narBW states to both
the low purityB sample (left) and the high purit§ sample (right). Un-
certainties are statistical only.

Parameter Low purity sample High purity sample
B; Q value (GeV/c?) 0.261+0.002 0269+ 0.003

B; Q value (Ge\//cz) 0.322+0.003 03194 0.004

Total B** events inBB™ — J/PK™ 193+42 80+ 18

Total B events irB* — DOt 260+ 40 106+ 20

The results are consistent on both the low and high purityp$esn For this measure-
ment, we quote only the mass difference values from the higitypsample. The fit bias
corrections are applied to the values from the high purity@a, and the final results are
shown in Tab. 5.7. These results are consistent within abgggindard deviations with

previous studies [18, 17]. The systematic error estima&skown in Sec. 7.1.
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Table 5.7: Fit bias corrections for tig&™* Q values and their statistical
errors. Correction factors are determined in Sec. 5.1.5.

Parameter Value Corr. factor Corr. Value  Units
B1 Q value 269 Add 0.22 269.22 MeVic
By stat. error 2.89 Mult. by 0.91 2.63 Me\Ac
B; Q value 319 Add-0.34 318.66 MeV/é
Bj stat. error  3.93  Mult. by 1.22 4.79 MeAc

[ B mass sideband in B . J/y K channel |

180
o

B mass sideband in B - D°ichannel |

—

= <, 180
%160 = X?=103.3/100 = 1.0 %160 = X?=108.7/101 = 1.1
Ou40- Fit Prob = 39% Q40 Fit Prob = 28%
S120F S120F
o F o E
—A00 100
@ 80 @ gof-
§ 60F- § 60
Woof T =
wpg 0 IR 20F
%0 05 To 15 20 %% o5 1O 15 2.0
Q =m(Bm) - m(B) - m(m) (GeV/cZ) Q =m(Bm) - m(B) - m(m) (GeV/cz)
Figure 5.15: Result of the simultaneous unbinned likelihGibtb the
sidebands oB* — J/YK* (left) andB* — DOrt™ (right) using the low
purity B sample. This represents tB& combinatorial background.
[_B"massinB” - J/y K decays | CDF Preliminary: ~374pb* B” mass in B - D’ decays CDF Preliminary: ~374 pb™
~ 120 . _ . &140F . _ -
L1208 X' = 5521101 =055 [ Tog it ek X' =79.61100=080 | ___ Totg] fit
gloo - FitPrab = oo [ Total background EIZO = Fit rob =555 | Total background
Seol ¢ 00 | Non-Comb. Bkg. go- AW, e Non-Comb. BKg.
St — B, - B'm Seof 1] —B,-B'm
4\960; _B;”BT[ Esoi+ ’ —B;—»BT[
c o & * c E JPECTR * *
,_a>,j o B, -Bm :>j aof- 2 é ! Ei -Bm
20 20, QL Rl i =
3% 05 To v %0 90 95 10 15 2.0

Ql= m(Br) - m(B) A m(m) (GeV/cz)l

channels, using the low puriy sample.
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Figure 5.16: Result of the simultaneous unbinned likelihfitdd the B**
Q distributions in theB™ — J/WK™ (left) andB+ — DOt (right) decay
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Figure 5.18: Result of the simultaneous unbinned likelihfitdd the B**
Q distributions in theB* — J/PK ™ (left) andB+ — DO+ (right) decay
channels, using the high puriB/sample.
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Figure 5.19: Simultaneous fit to tiBs* Q distribution in the high purity
B sample; this is the same fit as shown in Fig. 5.18, but with dlema
range on thex-axis.
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5.2.1 Alternative B** Signal Fits

The combinatorial background was separated for theBwalecay channels in order
to better constrain the total background; for a similar o@ashe non-combinatorial back-
grounds were constrained to have the same shape beBveeecay modes. The three
peak shape of thB** signal structure is based on theoretical predictions ofwwenarrow
B** states. These constraints add complication to the fit, layt #fso better describe the

data, as shown below.

No Background Separation

The fit was originally performed without separating combanal background from all
other backgrounds. In this case, we use separate backgmoodels for eactiB* decay
mode. There is also no need to fit the sideband distributem#ie number of histograms
in the simultaneous fit is reduced from four to two. A simu#tans unbinned likelihood
fit of this form to theQ distributions is shown in Figs. 5.21 and 5.22, with the resglfit
parameters given in Tab. 5.8.

The two fits, with and without sideband constraints as showfabs. 5.6 and 5.8 re-
spectively, are consistent with each other. For the higitypsample, there is little differ-
ence between the fits with and without sideband constraintesrins of theB** fit param-
eters. Without constraints, the background does fluctuaie rand causes the overall fit
probability to be lower for the fits in Fig. 5.22 compared tg.F5.18.

For the low purityB meson sample, background separation makes a greateeddger
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Table 5.8: Result of the fits to the narrdsi* states to the low purity
(left) and high purity (rightB samples without separating combinatorial
background from the other background sources.

Parameter Low purity sample High purity sample
B1 Q value (GeV/c?) 0.261+0.002 0270+ 0.003

B; Q value (GeV/c?) 0.322+0.003 0319+ 0.004

Total B** events inBB™ — J/PK™ 225+43 75+ 19

Total B events inB™ — Dort* 236+ 44 95+ 20

particular in the number d** events. The background rises almost directly underneath
the narrowB** signal; without any constraints, the location of the baoked maximum
fluctuates, and changes the number of events in the ndtoweaks. InB™ — J/PK™,

this shift in the background shape increases the numigt‘advents by nearly 17%, while

in BY — DOrt" the number oB** events decreases by nearly 10%. Although this is within
the limits of the statistical error, it would cause a largeenmainty on aB** yield mea-
surement, which we hope to make in the next version of thidyaisa Thus, although
the combinatorial background separation does not imptogertass measurement, it may
improve the measurement of the yields at a later date. Ferd#aison we chose to fit the

sidebands for combinatorial background in the final fit orhizzstmples.
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Figure 5.21: Result of a simultaneous unbinned Ilkellhootbfthe low
purity B sample where the two channels are fit with the same signal func
tion but separate background functions. The combinatbaakground
has not been separated from the remaining backgroundsns for
this fit are shown in Tab. 5.8.
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Figure 5.22: Result of a simultaneous unbinned likelihootbfthe high
purity B sample where the two channels are fit with the same signal func
tion but separate background functions. The combinatbaakground
has not been separated from the remaining backgroundsn&tas for
this fit are shown in Tab. 5.8.

Single Peak Structure

The Q distributions, particularly for th&" — Drt" channel, show thB; signal peak

to be much more pronounced than @gsignal peak. Thus, we also try fitting the high

purity B sampleQ distributions with only aB; signal PDF, with the signal function still

constrained to have the same shape for both decay modesn@diiikelihood fit without

separating the combinatorial background in each chanre&ias/n in Fig. 5.23. The fit

probability for this fit is slightly lower than that of the dgeflt fit with three signal peaks.
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rity B sample with only @, signal PDF. The combinatorial background
has not been separated for this fit. The fit probability ishgliglower
than for the defaulB; andB; signal PDF fit.
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No B** Signal

To estimate the significance of tlB&* signal, we also fit the mass difference distribu-
tions with only a background function and 85* or B{* signal functions. The result of a
binned likelihood fit to the high purit$d sample is shown in Fig. 5.24. The fit probability

for this fit is much worse than that of the default fit with theagnal peaks.
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Figure 5.24: Result of a simultaneous binned likelihood fithe high
purity B** sample with only the background PDF and no signal PDFs.
The combinatorial background has not been separated &fithi he fit
probability is much worse than for the defaBlt andB; signal PDF fit.
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5.2.2 Wrong SignB** Fits

TheQ distributions shown previously only use tracks with thereotcharge correlation
wtih the B meson to come fronB** decay,i.e. B*1tt. When tracks of the wrong charge
correlation B 1t", pass all otheB** selection criteria, these tracks fill the “wrong sigd”
distribution. There should be no evidence3sf signal in the wrong sign distributions.

Using a binned likelihood fit, the wrong sign distributionfiswith the defaultB**
signal function. The combinatorial background is not sefeat for the two channels. The
fits to the high purity wrong sign distributions may be seeRim 5.25; the number &**

events is consistent with zero for both channels.
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Figure 5.25: Result of a simultaneous binned maximum likelthB**
fit to Q distributions where thB meson and thB** track have the wrong
sign correlationB*1et. This distribution is made for the high purigy
samples. The number & in each mode is consistent with zero.

5.2.3 Three BodyB** Decays

Theoretically, it is also possible for tlg™ to decay to @& meson and two pions. Using
BT decay channels, we cannot reconstruct a three body de@iy%fas one of the pions

would be neutral and go undetected. HowevergHhé has the same spectrum as Bie°,
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and we may detect the decays® — B i,

Using the low purity sample d8 mesons, we reconstruBt** from theB* and two
tracks in the cone around thH&". Both tracks must pass all the track criteria listed in
Tab. 5.1. TheQ distribution is calculated in a similar manner as the twoybddcays,

Q = m(Brut) — m(B) — my. Thus for three body decays tiedistribution begins after the
charged pion mass.

We model the three bod distribution with a simultaneous binned maximum likeli-
hood fit of the sam®&** signal and background functions used in the fit on the two §@pdy
distribution. TheB mass sidebands are not used to separate the combinatakgrband.
The resulting plots are shown in Fig. 5.26. There is no ewdesf any peaks in thB**

signal region, and the number Bf* events is consistent with zero for both channels.
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Figure 5.26: Result of a simultaneous binned likelihood fihi recon-
struction of a three bodB** decay, withQ defined axQ = m(Brur) —

m(B) — myr. The combinatorial background has not been separated for
this fit. The number oB** in each mode is consistent with zero.
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Chapter 6

5% Measurement

6.1 Analysis Methodology

After completing theB**0 search, we used similar techniques in a search for the pre-
viously unobserved‘_lg*)i baryons. The&, measurement is based on events collected by
the CDF Il detector from February 2002 through March 2006hait integrated luminos-
ity of £ = 1070+ 60 pb 1. We first reconstruct the\g in the decay modé; 1t, where
A¢ — pK~1th, using the Universal Finder described in Sec. 4.1.4. THeiihg sections
describe thé:,(o*) reconstruction, determination of tlié*) backgrounds, fitting procedure

for thezé*) candidates, and results of this search.
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6.1.1 2, Reconstruction

For theZy, analysis, we use only events in th% mass signal region of [5.565, 5.670]
GeV/c®. We then find a track originating from the region near the priynvertex, as
depicted in Fig. 6.1. Unlike thB** search, we perform anoth®ert exFit to constrain
this track to a common vertex with tbl\eg candidate. Requiring a qualiBy, vertex fit, with
Prot(x%D) > 0.1%, is expected to improve the mass resolution oiheandidates. For this
fit, the mass of th@Krtis again constrained to the; mass although the combinépKm)mt
mass is not constrained to ti) mass. We then form th@ = m(AST) — m(AQ) — my
distribution, wherem(/\gn) =m(Xp). Initially, the only requirements on the pion frobp
decay, denoted by, , are thedef Tracks criteria.

Fig. 6.2 shows the resultin@ distributions forAST and A2rt™ with the %, search
region, 003 < Q < 0.1 GeV/c?, removed. Th&,, search region is determined from theo-
retical predictions, and has been removed to prevent acd&edection criteria. To reduce

backgrounds in th@ distributions, we search for a set of additional cuts optediforrt, .

6.1.2 Optimization of X, Selection Criteria

The X, optimization was completed using 922 pb ! of data, before the last 150
pb~1 of data from February 2006 were added. The data sample useapfionization
applied all the'\g selection criteria outlined in Sec. 4.5 except for the gaodariteria. We
expect these two differences to have no impact on the omiiiz, as described below, the

optimized cuts turn out to be quite stable.
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Figure 6.1: Sketch of the event topology okg produced in the CDF
Il detector. The tracks from the primary vertex are from thgquark
hadronization and the hadronization of fye debris.

We use the Zy sidebands” outside of thE, signal region to represent ti3¥g back-

ground. These sidebands are defined as:
e LowerXy sideband: 6< Q < 30 MeV/c?
e UpperZ, sideband: 10& Q < 500 MeV/c?

The signal for the optimization is taken from thg PYTHIA sample described in Sec. 4.6.
To enhance th&j, signal with respect to the background, we vary the mininps(y) re-
quirement, as well as maximujty/0g,| and minimum co8* of 1, candidate tracks. The
angle®* is defined between the direction of thg, in the %y, rest frame and the direction
of theXy in the laboratory frame.

We do not impose anpr cut on therts, candidate tracks, since, prior to optimization,

about half of theXy, events in our Monte Carlo sample lie below the standard mimmu
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value of 400 MeV/c?, as shown in Fig. 6.3. In addition, we want to keep@eistribution

in the signal region as level as possible to reduce systematertainties on the shape of
the background in the signal region. A cut pa(Tt,) would remove most of the candi-
dates in the lower sideband region of @Qedistribution. Instead we use c@§ which is
orthogonal taQ by definition but partially correlated witpr (T, ). Increasing the minimal
value of co$* of 115, candidates significantly reduces the overall backgrouvel lather
than depleting only the lower sideband. One possible bidkdroptimization is that the
Monte Carlo assumes a flat distribution in 8ddor true ¥, events. This is valid only if
the Z,, baryons are unpolarized. The polarizatiortgfbaryons produced ipp collisions

is unknown at this time, and will be the subject of fut@iemeasurements.

As shown in Fig. 6.1, a truets, originates from the primary vertex. By requiring
a promptrts, candidate, we reject poorly measured tracks and hadronstfie otherb
quark in the event, as well as tracks from spallation andralb&ctor-related processes.
Placing an upper limit ofdy/ag,| of T, suppresses these non-prompt components.

For a successful optimization, the samplegfsignal events must be as close to real
>, events as possible. For this reason we apply two correctmrise PYTHIA Monte
Carlo Z, signal sample: one for thigly/og,| of the 1, candidate, and one for thg,
pr distribution. We first compare the distributions |d/oq,| for the upperz, sideband
region in data and Monte Carlo (Fig. 6.4) to check that the Md2rlo correctly models
the|do/0q,| distribution of candidate tracks. For each distributioe,fiwthe core Gaussian

with its mean fixed to zero, and obtamof 1.12+ 0.03 and 1184 0.03 in data and Monte
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Carlo, respectively. While the values are statistically catiigpe, we scale the Monte Carlo
|do/ag,| distribution down by 5% to account for a possible true diparey. As a second
correction to theeYTHIA Monte Carlo sample, we also reweight the(Z,) spectrum
from PYTHIA using the same functional form used to reweight mé/\g) spectrum, as
described in Sec. 4.6.1. Tkp&(zb) spectrum is not known, so this reweighting is only
an assumption made befokg states are observed and their spectra measured explicitly.
These two corrections to theyTHIA sample, thgdy/ag,| and pT(Zb) reweighting, are
both applied before performing tfag optimization.

In the optimization, we use(Zy)/+/B as the score function, wheegz) is the effi-
ciency to reconstruct candidates from theTHIA %, Monte Carlo sample, anB is the
total number of background events that pass the cuts. Fapgtmization we do not di-
vide the events intai\grr and/\grr+ categories but keep all events together. We perform

a simultaneous optimization of all three ciisr (=),

do/0q,|, and co®*) using an iter-
ative one-dimensional gradient algorithm with fixed stegesi Thepr(Zy) is optimized
first while the other two variables are kept fixed; once theimaxmn of the score function
is found, then|do/0y,| is optimized while the other two are kept fixed, and so on,lunti
the score function is at the maximum with respect to all thres simultaneously. The
algorithm uses discrete step sizes, so the optimal valudgeauts are rounded to the near-
est step size. The step sizes are much smaller than the witlle snaxima of the score

function, and are listed in Tab. 6.1.

During this process, the ratio of the number of backgrourehtssin theX, search
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window given the number of observed events in Hpesidebands is fixed. This ratio is
a function of the shape of the background: the backgrountilwition is modeled by
a function of the form Eq. (6.1), which is then integratedidesand outside the search
window. Since the cuts on boi;htr(zb) and co®* affect the shape of th@ distribution
of the background events, assuming this functional fornragdn is an approximation.
However, the shape of the background may be fixed from a prswptimization; we thus
perform several optimizations in a row until both the cutd #me background shape are
stable. In the final optimization, the ratio of the expectachber of background events in

the search window and the number of events observed i@ gidebands is- 0.21.

Table 6.1: Selection criteria for thg, reconstruction, and the step sizes
used by the optimization algorithm.

Variable Cut value Step size

pr(Zp) >9.5GeV/c 05GeV/c
|d0/0'd0| <30 0.25

coso* > —0.35 0.05

The result of the optimization is shown in Tab. 6.1. TiN-= 1" scans are given in
Figs. 6.5, 6.6, and 6.7 for the final optimization scan. We ftiivad co$* is the only variable
which has non-negligible power to separate the signal frackground. All maxima of
the score function are broad, indicating that the optinratesult is fairly stable, since
a slightly different choice of cuts would yield a very sinmilsignal significance. Th&

distributions after applying the optimized cuts are showhig. 6.8.
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Q = m(A%1r) - m(A) - m(T) (GeVic?)

Figure 6.2: AJt (top) andAQT™ (bottom) Q distributions before ap-
plying optimizedZy, cuts. For the distributions after optimized cuts are
applied, see Fig. 6.8.
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Figure 6.5: The N — 1" scan of the cut orpr (). Top: &(5)/VB as
a function ofpr(Zy) (blue circles, left scale) ang(Z,) as a function of

pr(Zp) (green triangles, right scale). Bottom: distributionpaf(=y) for

2} signal (red histogram, left scale) and background in@&debands
(blue histogram, right scale). We cutt(Z,) > 9.5 GeV/c.
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6.1.3 2y Backgrounds

The three main sources of backgrounds todpsearch are described in the following
sections. To check for other significant sources of backmtpsuch as from 5-tracB
decays where one track is taken asmiecandidate, we reconstructed several large generic
B*/BY Monte Carlo samples, described in Sec. 4.6, @sandidates. The three availalile
decay modes are shown in Tab. 6.2, with the number of genkeeagnts and the number of
%, candidates passing the optimized analysis cuts iMfire and AT subsamples. The
number of candidates shown is for the entire ra@ge [0.0, 0.5] GeV/c?, and is counted
after normalizing the samples to 1.1 fbof data, the same amount used in Hyeanalysis.

Fig. 6.9 shows th&) distributions of the most significant background, which baky 16
events for\2rr- andA2rt™ combined after normalization. Ti@distributions indicate that

these backgrounds are a negligible contribution taihsearch.

Table 6.2: Summary of the generic Monte Carlo samples coresida

these background studies. The number of candidates mestikhg se-

lection criteria are counted after normalizing the sampiethe same
luminosity as data, 1.1 fi.

Sample Total events generated)r candidates A" candidates
B? — DX 1.5 billion 0 1
B° — D miX 4.5 billion 4 12
BT — DX 4.5 billion 0 0
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Figure 6.9: TheA? o7 (left) and /\OTr+ (right) Q distributions for the
B? — DX sample after applying aHb selection cuts and normalizing
the sample to a luminosity of 1.1th. There is very little background in
theX Q distribution due to these modes.

Combinatorial Background

The combinatorial background is taken from the high massbsidd of the’\g invari-
ant mass distribution, m@) € [5.8, 7.0] GeV/c®. The low mass sideband also contains
misreconstructe® decays, a background source which will be discussed sebarst we
use only the high mass sideband as a sample of pure comb@&i@ckground. Since we
use tracks from the sideband region to model tracks in theasiggion, we need a scale
factor to properly normalize the track distributions frame sideband region to those for the
signal region. This scale factor is the ratio of the area utlteecombinatorial background
function in theA? mass fit for the signal region, M) € [5.565, 5.670] GeYc?, to the
area under the sideband region. This results in a scaler fafcfol61+ 0.084.

TheZy backgrounds are modeled by a function of the form

f(QiC‘,Qmax,V) - <Q§ax> ei%(( max
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Eq. (6.1) is a modified version of the function in Eqg. (5.1)disdescribe the backgrounds
in Q spectra o8B0 decays. In this parameterizatio@max is the value ofQ for which
f(Q;a,QmaxY) has a maximum for ang andy; the variablesx andy regulate the shape
of the function from zero t@maxand above)nax respectively. Eq. (6.1) is not normalized
to one — when building the PDF based on it, RooFit will do thienatically — however,
it has the useful property th&{Qmax) = 1 for anya andy.

We perform a binnned likelihood fit of Eq. (6.1) to tmgrr and/\grr+ combinatorial
background distributions as shown in Fig. 6.10. The valdéeeparameters are given in
Tab. 6.3. Due to the low statistics in the hig@ mass sideband, there are large fluctuations
in the data and the fit parameters have large statisticartamcges. The number of events
is then multiplied by the scale factor ofi®1+ 0.084 to give the correct normalization of
the combinatorial background. Both the shape and the narataln of the combinatorial

background are fixed in the fit to data.

-~ 2 -~ 25 2
o 22F X2INy = 7341 52=1.41 ~ r X2INy = 36.4/ 52=0.70
2 20 Fit Prob.= 3% 2 C Fit Prob. = 95%
> 18F > 20F
S 6 2
145 15
S =
= = 10 + + H
0 oF 0
b 6, b
% a4y + qCJ > + # H
S 2 b >
Ll F\\\\ LLl P R R R B
80 0.1 0.2 0.3 0.4 0.5 ) 0.1 0.2 0.3 0.4 0.5
2 2
Q = m(ADTT) - m(A) - m(M) (GeV/c) Q= m(AXT) - m(AD) - m(m) (GeVic)

Figure 6.10: Fits to the&y combinatorial background distributions,
which are taken from th&2 mass sideband region. Lefdrr, right:
/\grﬁ. The parameter values are given in Tab. 6.3.
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Table 6.3: Parameter values for the shape and normalizatithre com-
binatorial background in bothOr (left) andAQTT™ (right).

Parameter e AT

a 0.5+0.9 17+29
Qmax (GeV/c?) 0.15+0.10 012+0.06
y 13426 03+13
Events 538t 33 528+ 32
Scaled Events 8% 45 85+ 44

Fit Probability 3% 95%

Physics Background

The “physics background” is primarily composed of rB8imesons misreconstructed
asAY baryons. This includeB® mesons fronB*+ decay. Due to the mixing @° andB°
mesons, this background will be present in bothAlje and theAXrt™ distributions.

To measure this background, we first reconstruct the dech@ o> D1, where
Dt — K~ 1t*, in aB® data sample. By replacing one pion mass with the proton mass,
we reconstruct thB+ asA¢ and theBC asA. All kinematic criteria from the\) analysis
are then applied: we require the sapiecuts, but do not make the mass cuts. We combine
these candidates with a track from the primary vertex to fafrg Q distribution.

In a largeB® PYTHIA Monte Carlo sample with B** yield of 20%,B*** appear in the
>}, Q distribution as two peaks & ~ 0.29 andQ ~ 0.31 GeV/c?, far outside of thezy,

signal region. When normalized to a luminoisity of 1.1 fbthe number oB** passing
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the /\8 kinematic cuts is quite small, and thus tB& peaks in the background are not
readily visible. Consequently, we treat the physics baakgas, including thé** peaks,
as smooth.

We take the shape of tH&°? backgrounds from thB° data sample, but we must scale
the backgrounds to the numberBimesons expected in tm% sample. The scale factor
is taken as the ratio of the numberBff events in thef\g mass signal region to the number
of BY events in the reconstruct®? sample. The number & in the A signal region is
calculated as part of thﬁg invariant mass fit described in Sec. 4.5 and is about280
(stat.) events. We analyzed only the first700 pb ! of B® data and found 4578 80
(stat.) B® events which passed the kinema&ig selection, resulting in a scale factor of
0.056+ 0.032. The physics background is modeled by a binned liketiHamf Eq. (6.1)
for both AQrt and AQrtt. The results are shown in Fig. 6.11, with the parameter galue
given in Tab. 6.4. Both the shape and normalization of theiphysackground are fixed in

the fit to data.

NA 70; XN, =55.0/ 53=1.04 NA 80? X¥Nyo = 53.1/ 53 =1.00
(&) 6of Fit Prob. = 40% o 70F + Fit Prob. = 47%
= F
2 o

r 60F

2 50E E 505
g« e
— onf v40:

— 30: — 30k
n %] E
-oqC—Jl 20 -IGC—)' 20k
S 10: = 10
w w F L

B~ —61 oz 03 04 05 85091 9z 03 04 05
Q = m(A°rT) - m(A) - m(m) (GeV/ic)  Q = m(A°Tt) - m(A°) - m(m) (GeVicY)
Figure 6.11: Fits to th&, physics background distributions froBf

data. Left: /\grr, right: /\81’(*. The parameter values are given in
Tab. 6.4.
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Table 6.4: Parameter values for the shape and normalizafiche
physics background in bothdrt~ (left) andAJrt* (right).

Parameter e AT

a 0.35+0.17 08+0.8
Qmax (GeV/c?) 0.15+0.03 010+0.02
y 1.8409 07407
Events 1936-62 1871+61
Scaled Events 10962 105+ 60

Fit Probability 40% 47%

Hadronization Background

The majority of theX,, background is due to tracks from the fragmentation of prompt
/\8 baryons €.g. the hadronization of thb quark). There are also tracks from the under-
lying event, or the hadronization of th&p debris, but these tracks are indistinguishable
from fragmentation tracks so we use “hadronization” to deniee sum of both sources of
background tracks. Unfortunately, it is impossible to e this background from data,
as thel\g data sample is also o, data sample. Instead this background is studied using
the AQ — A{TT PYTHIA Monte Carlo sample described in Sec. 4.6. This sample does not
contain physics or combinatorial backgrounds, and we renathMrueZ, events, leaving
behind only prompt\g events. In order to evaluate thg background due mg hadroniza-
tion using Monte Carlo alone, the Monte Carlo must model the detl. The background

shape is determined after the reweighting described in5éd..
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We evaluate the scale factor for this background as the otioe number of’\g in the
data to the number df? in the Monte Carlo sample. From tid mass fit, the\D — AT
yield is 2927+ 58 (stat.) in the'\g signal region. The number oﬁg in the Monte Carlo
sample is 14060+ 120, giving a scale factor of. 208+ 0.042. A binned likelihood fit of
Eqg. (6.1) is performed, and the results are shown in Fig. &tPTab. 6.5. Both the shape

and normalization of the hadronization background are firgte fit to data.

Table 6.5: Parameter values for the shape and normalizafitme /\8
hadronization background in botifrt (left) andASrt* (right).

Parameter N Nt

a 0.66+0.06 067+0.25
Qmax(GeV/c?) 0.122+0.005 011+0.01
y 0.73+0.01 086+0.31
Events 756@-123  7410£122
Scaled Events 1572318 1541311

Fit Probability 36% 94%

Fig. 6.13 shows th&y, Q distribution in data along with the three backgrounds dbedr
in these sections. Also shown is the sum of the three backgsyuvhich agrees well with
the shape of the data. ¥ calculation gives a fit probability of 38% between the esteda
background and the data in the sideband regions. The backdjappears to be smooth in

theZy signal region as well.
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Figure 6.12: Fits to thef\g hadronization background distributions,

which are taken from ayTHIA Monte Carlo sample. Lefft\gn*, right:
/\8T[+. The parameter values are given in Tab. 6.5.
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Figure 6.13: The three different background componentsries] in
Sec. 6.1.3 and their sum are shown superimposed o thistributions
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6.1.4 Systematic Evaluation of theeYTHIA /\8 Track Reweighting

As explained in Sec. 4.6.1, there are too few soft (loyy tracks around thé\g for
the PYTHIA Monte Carlo sample to agree with data. To correct for this, ook the ra-
tio of the trackpr in data and Monte Carlo and modeled it with a linear functiamj a
reweighted the Monte Carlo accordingly. However, there tatstical uncertainties on the
track pr distribution in data, and the ratio distribution may be b a systematic way.
This propagates as a systematic uncertainty on{\ﬂmadronizatiorQ background shape
which is used in th&y, fit to data.

To evaluate a possible systematic bias, we reweight th& paspectrum from data

using the following procedure:

1. Find the number of entries and the associated Poissoniereach bin of the track

prt histogram.

2. Create a linear functiof(pr) = 0.5pr — 1, which is equal to-1 at pr = 0 and+1

at pt = 4 GeV/c, above which there are very few tracks.

3. Fill a new trackpt histogram with the same entries as the original histogrdus, p

the value of the bin error multiplied b§(pr) evaluated at the central value of the

pr bin.

4. Use this histogram as the new data tragkspectrum and evaluate the ratio with the

Monte Carlo to produce a reweighting function.
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This procedure systematically moves the values withirr greor bars. The function in (2)
above has the effect of reducing the number of soft tracksimereasing the number of
hard (highpr) tracks. We refer to the systematic uncertainties evatlageng this function
as the “Reweighted Down” systematics. We also use a fundtigy) = —0.5pr + 1,
which is equal to+1 at pt = 0 and—1 at pr = 4 GeV/c. This has the reverse effect of
increasing the number of soft tracks, so we refer to the syaie uncertainties evaluated
using this function as “Reweighted Up.” In these cases, thehau of events in one bin
increases or decreases at most by the value of the error dninthnus, we refer to these
as reweighting up or down by d&. We also evaluate the @ case using functions of the
form f(pr) = £0.5p7r 2. The resulting linear fits to the ratio of data to Monte Cadp f
these reweighted spectra are shown in Figs. 6.14 and 6.1bddro and 2o reweighting

respectively. The fit parameters for all optional reweighs are given in Tab. 6.6.

Table 6.6: Parameter values for the linear functions useeWteight the
Monte Carlo, after systematically reweighting the tramkspectrum in
data either up or down by 1 ando2

Parameter Down & Down 20 Uplo Up20

Po 1.59+4+0.06 144+ 0.06 1894 0.06 202+ 0.07
P1 —0.274+0.041 —-0.191+0.041 -0.450+0.039 -0.5264-0.043
Fit Prob. 69% 42% 92% 90%

Using the new linear fits to reweight tirer THIA Monte Carlo, we derive new shapes

for the /\8 hadronizationQ background. These shapes are shown in Figs. 6.16 and 6.17
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T 3.0 X2 fit prob: 68.65% T 3.0 3 x2 fit prob: 91.61%
SoVF const = 1.59 + 0.06 (g 3 const = 1.89 + 0.06
prd 2.5 ;— slope =-0.274 + 0.041 e 2.5 ;— slope =-0.450 £ 0.039

Figure 6.14: Plot of the functions used to evaluate the syatie un-
certainties due to reweighting th&ﬁ PYTHIA Monte Carlo sample up
or down by 10. The left histogram shows the ratio of the track
pr spectra between data and Monte Carlo after the data specam h
been reweighted down by a functidiipr) = 0.5pt — 1, while the right
histogram shows the ratio after the data spectrum has besxgtged

up by a functionf(pt) = —0.5pr + 1. Parameter values are given in
Tab. 6.6.

for the 10 and 20 reweighting respectively. The fit parameters for all rewéiiggs are
given in Tab. 6.7. The shape parameters change slightly firendefault fit, although the
only systematically shifted background parameter is@hgy parameter. The & varied
shapes will be used on the fit to data (Sec. 6.2.3), and to &eaftlystematic errors due to

thePYTHIA /\g track pr reweighting (Sec. 7.2.2).
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Figure 6.15: Plot of the functions used to evaluate the syastie un-
certainties due to reweighting thrteg PYTHIA Monte Carlo sample up
or down by 20. The left histogram shows the ratio of the track
pt spectra between data and Monte Carlo after the data specam h
been reweighted down by a functidipt) = 0.5pt — 2, while the right
histogram shows the ratio after the data spectrum has baengteed

up by a functionf (pt) = —0.5pt + 2. Parameter values are given in
Tab. 6.6.
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Table 6.7: Parameter values for the shape and normalizafitme /\8
hadronization background in boﬂﬁrr and/\8n+, after performing the
reweighting described in the text (Sec. 6.1.4).

AT Down 10 Down 20 Uplo Up 20

o 0.66+0.01 065+0.005 Q067+0.38 067+0.003
Qmax (GeV/c?) 0.126+0.007 Q133+0.005 0116+0.018 Q112+0.004
% 0.72+£0.07 071£0.005 Q73+045 074+0.003

Number of events 7270121 6990+ 118 7840+ 125 8120+ 127

ATt Down 1o Down 20 Uplo Up20

a 0684027 0654024 067+£024  066+0.22
Omax (GeV/c?)  0.107+0.011 Q111+0.011 Q102+0.010 Q100+ 0.009
y 0854032 086+0.31 087+£029  088+0.27

Number of events 7108119 6780+ 116 7720+ 124 8030+ 127
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Figure 6.16: Alternate parameterizations of thahadronizatiorQ dis-
tribution from thePYTHIA Monte Carlo sample. The figures on the left
are after performing the reweighting down by;land on the right after
reweighting up by I (as described in Sec. 6.1.4). The upper plots show
the /\81'{_ subsample while the lower plots show th%rr+ subsample.
Parameter values are given in Tab. 6.7.
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Figure 6.17: Alternate parameterizations of thahadronizatiorQ dis-
tribution from thePYTHIA Monte Carlo sample. The figures on the left
are after performing the reweighting down by2and on the right after
reweighting up by 2 (as described in Sec. 6.1.4). The upper plots show
the /\81'{_ subsample while the lower plots show th%rr+ subsample.
Parameter values are given in Tab. 6.7.
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6.1.5 %, Fit Description

All of the X, background components are fixed in the fit to data, with ordgmasses
and numbers of events left as free parameters in the fit. Agiesl in the following sec-
tions, we fit theASTr and APt subsamples simultaneously with an unbinned maximum

likelihood fit. TheZy, fit is also performed using RooFit, version 2.05.

Q Detector Resolution

EachZy state is described by a non-relativistic Breit-Wigner PDRvaduted with a
double Gaussian detector resolution. The Gaussian detestolution is taken from the
PYTHIA Zj signal sample described in Sec. 4.6. Since the sample isajedevith an input
width of zero for allZy, states, the width of the reconstruct®geaks is a measurement of
the detector resolution. This resolution, with double Gearsfit superimposed, is shown
for £ andZ,~ in Fig. 6.18 with the resolution values given in Tab. 6.8. Tihprobability
is low (~ 0.04%) due to very poorly measured tracks; these tracks lfamgnon-Gaussian
tails which cannot be described with a double Gaussian md@kstause th&, andZ;~
resolution parameters are statistically compatible, weethe average values oharow =
1.17 MeV/c2 (with a weight of 0.90) an@jge = 3.0 MeV/c2 as the detector resolution

for all 2, states in the fit.
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Table 6.8: Detector resolution values@ifor =, andX ", taken from a
PYTHIA X, Monte Carlo sample.

State Gnarrow(MeV/c?)  Ouide (MeV/c?) Weight of narrow

2, 1.14+0.04 30+0.2 0.92

" 1.19+0.03 30£0.2 0.88

> Fit Model

The predicte, signal is described in Sec. 2.5. We expect to see two peaﬁxgr'm
for =" and two inAlTtt for £, The masses £\~ and={”" will be very similar,
probably separated by only a few M@ as shown in Tab. 2.9. In the fit, ti¥, intrinsic
width will be determined by the central value of thgmass according to Eq. (2.7).

Due to the low statistics of our sample, we constraindhe- X, mass difference to be
the same fondT and A", We do not expect these mass differences to be exactly the
same, and the expected difference @f@+ 0.07 MeV/c? is used in Sec. 7.2.2 to evaluate
systematic uncertainties from this assumption. We fit/\ﬁfr and/\gnJr subsamples si-
multaneously with the commaxj, — %, parameter. There are no constraints on the number

of events in each state. The seven floating parameters imtitaneous fit are:

e 2, Qvalue
e 3 Qvalue
e 3, —>pQvalue

e Number of events for each of the folig states
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Figure 6.18: Smearing due to detector resolution forifieandZ,~ Q
distributions in &P YTHIA X, Monte Carlo sample. Each state is modeled
by two Gaussian distributions. Fit parameters are giveraim 6.8.

6.1.6 Tests of they Fit

Using a preliminary fit to they data, we chose th&, input parameters shown in
Tab. 6.9 to perform stability tests of ti2g fit. A plot of the Z}, signal for this set of input
parameters is shown in Fig. 6.19. As with B€ fit model (Sec. 5.1.5), we study fit stabil-
ity by generating many Toy Monte Carlo samples and evaludtiagoulls on the floating
parameters in the fit. For thg, fit, we use the inpuk, parameters and the background
parameterizations described in Sec. 6.1.3 to generate BpMonte Carlo experiments
of AD™ and AQmt™ with the same statistics as the data. We then fit each samphietivei
simultaneous fit. An example of one such Toy Monte Carlo sampd@own in Fig. 6.20.

The errors on the parameters are asymmetric, which can bhdreeethe pull distributions

168



in Fig. 6.21. When using only the parabolic error estimateséxh parameter, there are
non-Gaussian tails on some of the pull distributions. Tlstrithutions in Fig. 6.21 are fit
with a unit Gaussian on the range2, 2|, with the Gaussian parameters given in Tab. 6.10.

Instead of using parabolic error estimates, we evaluatpdbiive and negative errors
separately for each parameter. Occasionally, the erroesgamameter exceeded the limits
of the parameter, and one or both of the asymmetric errorisl cmi be calculated. These
fits were removed from the pull calculations. The resultind gistributions are shown in
Fig. 6.22 and the Gaussian parameters are given in Tab. @ Hlfit on the rangé-5,5|.
There are two pulls which deviate significantly from the @@#ussian: thég Q value and
the £ number of events. Qualitatively, we expect this becaus&hes the smallest of
the fourZ, peaks and thus more sensitive to fluctuations.

We estimate the systematic bias on each parameter by fittngtv difference between
the input parameters and the final fit parameters for each Tayt®/Carlo sample. These
differences are shown in Fig. 6.23 and the fit results arengivdab. 6.12. For all param-
eters, including th&,” Q value and the&,” number of events, the fit bias is much smaller
than the expected statistical and systematic uncertaioti¢hat parameter. Thus we ignore
any systematic bias due to the fit model, assuming it is adelyuaccounted for by other

systematic and statistical uncertainties.
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Table 6.9: List of the inpuXy, signal parameters used to test the fit model.

Signal parameters Values

Z, Q(MeV/c?) 56
2, events 65
Z" Q(MeV/c?) 48
Z. events 32
Z, events 83
> " events 82

5 — % Q(MeV/c?) 22

Table 6.10: Pulls on the floating parameters using only pdi@brrors
calculated on 2000 Toy Monte Carlo samples. The Gaussiarois fiie
range[—2, 2.

Signal parameters Gaussian Mean Gaussian

2, Q 0.003+0.04 104+0.04
2, events —0.04+0.04 106+0.04
Z; Q 0.04+0.04 101+0.04
Z. events 05+0.04 099+0.04
>, events —0.21+0.04 106+0.04
> " events —0.09+0.04 103+0.04
2,—2pQ —0.01£0.05 113+0.05
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Table 6.11: Pulls on the floating parameters using sepacsiive and
negative errors calculated on 2000 Toy Monte Carlo samples.Gaus-
sian is fit on a range df-5, 5.

Signal parameters Gaussian Mean Gaussian

2, Q 0.07£0.03 107+0.02
2, events —0.02+0.02 106+40.02
Z; Q —0.02+0.03 116+0.02
Z) events —0.23£0.02 094+0.02
>, events 005+0.03 108+0.02
Z;* events —0.03+£0.03 107+0.03
2,—2pQ —0.08£0.02 10640.02

Table 6.12: Gaussian fit to the raw differences of the Toy Mddéarlo
samples. The mean value is an indication of the systemattcdn each
parameter due to the fit model.

Signal parameters Gaussian Mean Gaussian
Z, Q(MeV/c?) 0.05+0.04 15+0.03
2, events -0.6+04 149+0.3
Z Q(MeV/c?) —0.094+0.05 20+0.03
Z! events —-3.0+0.3 116+0.2
Z,~ events ®+05 195+0.3
Z:" events —-0.6+0.4 180+0.3

i -3, Q(MeV/c?) —-0.17+£0.05 19+0.03
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6.2 Result of theZ, Fit to Data

After determining the background parameterizations, vak lat events in th&y sig-
nal region and observe an excess over the predicted bacldgoin the>y, signal region
of Q € [0.03,0.1] GeV/c?, the excess in thA subsample is 118 events over 288 ex-
pected background events while in 'rh%nJr subsample the excess is 91 events over 313
expected background events. The distribution of thesessesdas shown in Fig. 6.24 after

subtracting the parameterized backgrounds.

6.2.1 Evaluating theZy Signal Significance

Because this is the first observation of fygestates, it is important to establish that the
signals we observe are not fluctuations of the backgroundsilimate the strength of the

four Xy, signal hypothesis, we study three alternate hypotheses:
(1) No signal (null hypothesis)
(2) One peak pel\grr charge combination
(3) Threezy, peaks instead of four

The third hypothesis tests the strength of eagipeak individually.
To determine the strength of the fatyy peak hypothesis against each alternate hypoth-
esis, we use the value of the maximized likelihood. Theiliiad contains all information

about the fit. The likelihood ratidLR) is the ratio of likelihood values for two different
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hypotheses evaluated on the same data sample. The valweld® gives the likelihood of
the first hypothesis over the second hypothesis [75].

The fit to data is performed as a maximum likelihood fit, with Ribaeturning the
equivalent minimized negative log likelihood,In(£ ) or NLL, for each fit. In these terms,
the likelihood ratio is defined as

efN LLy

LR — gNte-NLL (6.2)

= NG
whereNLL; is the negative log likelihood returned by a fit of an alteenaypothesis to
the data, andNLL, is the negative log likelihood returned by the default fayrsignal
hypothesis. The quantifyiLL, — NLL; is referred to as thANLL.

The standard evaluation of the significance of a signal isrgin terms of thep-value.
The p-value is the probability that, for a given hypothesis, weuldoobserve data as ex-
treme as what we measure. For example, if our hypothesisidhbk signal we observe
is due to background fluctuations, thevalue is the probability that we would obserxg
signals as large or larger than what we observe in data. Higral is very significant, then
the p-value of this null hypothesis is very small. Tpevalue may also be interpreted as the
area in the tails of a unit Gaussian distribution, also knaathe “normal” distribution in
statistics; we translate this area into the equivalent rermabstandard deviations from the
Gaussian mean. p-value of~ 2 x 10-2 corresponds to &, which shows the hypothesis
under consideration is still reasonably likely.pAvalue of~ 3 x 10~7 corresponds to B,

at which point the hypothesis under consideration is higimlykely.
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To computep-values based on theR for the alternate&y, hypotheses, we generate a
series of Toy Monte Carlo experiments from the alternate thgs®es. The experiments are
then fit both with the alternate hypothesis and the defauit Iy signal hypothesis. From
this, we obtain a probability densiBkg(ANLL) to observe at least a likelihood difference
of ANLL for the fourZy signal fit on a sample of an alternate hypothesis. We then use
the measuredlR from data and integratBy(ANLL) from (ANLL)%@to infinity. That
integral divided by the total number of Toy Monte Carlo sarsgenerated is thp-value.

One issue with this method of evaluating significance is trsesnatic variations of
the background and signal PDFs. These variations and tbkingsuncertainty from each
are described in Sec. 7.2, but for thesalue calculation we must integrate the likelihood
over these systematic variations. To do this, we paranzeteach systematic variation as a
constraint in the fit, which is added to the likelihood. Forahaf our systematic variations,

this was straightforward. These variations and their terthe likelihood are:

e 2y intrinsic width, parametega = 0.754+0.05. The corresponding term added to the

2
I . 1(ga-075
ikelihood is 3 (%555

e 3; — 3y isospin splitting (defined a&.), predicted to be @0 0.07 MeV/c2. The

2
corresponding term added to the Iikelihoo%i@%&%’?“) .

. /\g sample composition: we propagate the errors from/t@envariant mass fit to
determine errors on the normalization of eaghbackground component. This re-

sults in six terms added to the likelihood, of the same Gaussbnstraint form as
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the previous two.

— A hadronizationN(AJTT) = 15724+ 318,N(AST") = 1541+ 311.
— B hadronizationN(AJTT ) = 109+ 62, N(AQTT") = 1054 60.

— Combinatorial backgrounds (A2 ) = 87+ 45,N(AJrth) = 85+ 44.

The remaining systematic variations are not as straigh#fod. The detector resolution
is modeled with a double Gaussian, and as a systematic weleomscreasing the width
of these Gaussians by 20%. To describe this systematidieaiave need an asymmetric
function which does not allow the parameters go below thefiawlt values. But we cannot
use a discontinuous function in the likelihood. Instead @gklIfor a function that increases
rapidly below the default value, but increases like a Gaussonstraint above the default
value. To do this, we fill a histogram with randomly generateents distributed according
to a discontinuous function with a large “wall” below the delft value and a Gaussian-
type distribution above the default value. We tried modglinis histogram with several

different functions, and the one which fit best is of the form

2
1 X—0
§<a(1—b(x—0))> (6:3)

whereg is the default value of the resolution width amdndb are floating parameters we

fit to the histogram. The fit of this function to the histografmsboth values ob is shown
in Fig. 6.25, with parameters given in Tab. 6.13. The fits areparticularly good, but the

functions show the properties we desire: rapid increasa\beland more gradual increase
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aboveo. The two terms added to the likelihood for the detector tgsmh model are of the

form of Eq. (6.3) with the values fa andb fixed from the fits.

Table 6.13: Parameter values for a fit of the form of Eq. (6a3)he
distributions for the detector resolution likelihood ctragts shown in
Fig. 6.25.

Parameter Narrow Gaussian= 1.2 MeV/c?> Wide Gaussiaw = 3.0 MeV/c?

a (3.9940.01) x 106 (2.59+0.01) x 1075

b 4214+ 8 518+2

The final systematic variation to consider is tk&hadronization shape. The systematic
variations of this shape are described in Sec. 7.2.2. Oniatigar involves shifting the
number of events in thag hadronization background; this systematic is accountetyo
the /\8 sample composition. The effect on tmg hadronization shape from reweighting
the PYTHIA /\g Monte Carlo sample can be described by Qg parameter, as shown in
Sec. 6.1.4. Thus to describe the reweighting, we add two skausonstraints on th@max
parameters; (Q"‘%of‘lz) " for AJrr, and3 (Qm%of'lﬂ * for Nt

This gives a total of 12 constrained parameters added takékhbod, bringing the
number of floating parameters in the fit to 19. As a check, wehisnl9 parameter fit on the
data and compatre it to the default 7 parameter fit. The reatdtshown in Sec. 6.2.2, and
there is almost no deviation in the final values for the 7 freatihg parameters. However,

the fit which took 30 seconds to converge with 7 floating patansdakes nearly 5 minutes

to converge with 19 floating parameters.
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The first step in evaluating the significance via likelihoata is to fit the data with an
alternate hypotheses (null, tvigp peaks, or thre&, peaks). This is done with the appro-
priate constrained parameters added to the likelihoodtteonull hypothesis, since there
is no Zy, signal, the systematic variations related only to Igesignal ¢y intrinsic width,
isospin splitting, and detector resolution) are not adaethé likelihood. The resulting
likelihood ratios for each alternate hypothesis are givemab. 6.14. The null and twhy
peak fits to data are shown in Fig. 6.26.

For the null hypothesis, which has an extremely lai@d L value of 42.4, we expect
that even in millions of Toy Monte Carlo samples we will neverdfione with as large
aANLL value as in data. In fact, most of these samples will show gio sf aZy, signal.
Because the fouxy, signal fit with systematic variations takes nearly 5 minatesonverge,
it would take a prohibitive amount of processing time to rgnnaany Toy Monte Carlo
samples as we need if the folig signal fit runs over each sample. Ultimately, we decide
to run the background only fit on each Toy Monte Carlo samplegead with no signal.
Then we calculate thg? between the sample and the background only model irEthe
signal region ofQ € [30,100 MeV/c?. If the x? is below a certain value, we can conclude
that the background model describes this sample well, amglttiere is no need to run the
four Z, signal fit because there is no indicationXyf signal. This sample may then be
added to the denominator of oprvalue calculation.

To determine the appropriax@ cut value, we generated 20,000 Toy Monte Carlo sam-

ples from the fouky, signal model, fit them with the background only model, andwaaled
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thex?. We also fit each sample with the foli signal model so that we could calculate the
ANLL value for each sample. We then plotted fiiéLL versus the background moge,

as shown in Fig. 6.27 (left). From this, we determined thesamples with a significant
amount of signal&NLL greater than or equal to the value found in data) should hade a
between the sample and background only model of greaterthamhere are only 11 fits
with x2 < 45 andANLL > 42; generating each of these 11 samples locally, we disedver
that the largANLL value was due to a failure of the fit, either the background fihe four

>y signal fit. Through this, we discovered that the error leetlhe systematic variations
were not being set properly, thus introducing a fit instp#is the error level determines
the step size during likelihood maximization. We were ablix this by expliciting setting
the error levels of each parameter. After rerunning the Elwfith this fix, all converged
properly and theANLL of each fit was reduced to less than 40. Thus, we are confident
that using a? cut at 45 will not eliminate any Toy Monte Carlo samples wittiguially
significant signal.

For the null signal hypothesis, we generated almost 12 anilBamples. Of those,
approximately 72700 samples had a null signal fit wigtf > 45; the fourZ, signal fit
was only evaluated on these samples. Even after fixing tle kewel of the constrained
parameters, there were some failed fayrsignal fits to the Toy Monte Carlo samples.
When a fit fails, we expect the fit status from RooFit to be retdiaefailed, with either an
approximate error matrix or a non-positive definite errotnma\We removed all fits which

did not end with a full, accurate error matrix. Some fits neut an accurate error matrix,
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Table 6.14: Likelihood ratig-values for the alternate signal hypotheses,
where (ANLL)%® denotes the difference in the negative log likelihood
values for the alternate hypothesis and the defaultIgigignal hypoth-
esis in a fit to the data. For the null hypothesis, no eventg wbserved
with the significance seen in data. Consequently, the nulbtingsisp-
value is only an upper limit.

Hypothesis  (ANLL)da@ p-value Significanced)

Null 424  <83x10°8 >5.23
Two peaks 13 92x107° 3.74
No %, Peak 117 32x1074 3.41
No = Peak 39 9.0x 1073 2.36
No =~ Peak 108 6.4x10°% 3.22
No =" Peak 113 6.0 x 10* 3.24

but upon closer examination we found the expected distamoeiiimum (EDM) of the
fit was very large. A properly minimized negative log likedibd should have an EDM of
order 10°°. To remove these failed fits, we required an EDM of less tha.O0.

Even after these clearly failed fits were removed, some ouredile fits remained. In
these fits, the error matrix was returned as full and accutegd=DM was small, and yet the
X2 between the fouEy, signal fit and the Toy Monte Carlo sample was large, on the arfder
several hundred in the signal region alone. Upon plottingesof these failed fits, we find
that one of the fouk,, peaks is an anomalous spike with a hundred or more eventewher
there is no peak in the sample. This failure mode proved tadegendent of the ROOT and

RooFit versions. We ran several Toy Monte Carlo samples, il geeds and anomalous
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seeds, through extensive debugging searching for memaksy,leverwrites, and any useful
debugging information. We also moved from an unbinned mariniikelihood fit to a
binned maximum likelihood fit and even a binned minimyffit. In the binned fits, the
anomalous samples either failed to converge, with a noorate error matrix and large
EDM, or converged to about zero events in lygeaks. From these exercises, we conclude

the following:

The good seeds (identified by a I in the X}, signal region) converged under every

fit configuration, and are consistent between binned andnuedli fits. Therefore,

they truly are good fits.

e The anomalous seeds which look like good fits (accurate emedrix, small EDM,
but a largex? in the X, signal region) are truly failed fits. A binned fit to the same

sample will either fail to converge or converge with no eganttheXy, peaks.

e The problem with the failed fits is not an instability of thgfit model; if it was, the

binned fits would fail in the same manner.

e The problem with the failed fits appears to be a bug in the caatjon of the un-
binnedNLL. When we plot the likelihood as a function of the number of ésem

the anomalous spike, it is smooth with a clear minimum at tit@alous value.

The authors of RooFit have been contacted to notify them cfetipeoblems. Although
debugging work will continue, for thEy, significance calculation it is enough to show that
the fit itself is stable and to remove these failed fits fromghalue numerator.
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To remove the last of the failed fits, we usg%cut on the fouiz,, signal fit. From the
x? distribution of the fourZy, signal fit on Toy Monte Carlo samples generated with sig-
nal (Fig. 6.27, right), we see)@ < 100 cut should remove all anomalous samples. After
removing all failed fits, we are left witk- 17,500 samples in the null hypothe&isILL dis-
tribution. None of these Toy Monte Carlo samples has closegANLL found in data; the
largest value i&ANLL ~ 24. Thep-value is calculated using the total number of generated
samples, without removing the failed fits from thevalue denominator. These 12 million
samples correspond topavalue of~ 8.4 x 10~8, or a significance of 23 a; we know the
true p-value is less than this. As a cross-check of the likelihaitr we extrapolate the

ANLL distribution out to the value found in data using a decayxjgpaential of the form
f(X) = po- e~ *0)/P1 (6.4)

wherexg = 12 is the starting point of the fit. This fit is shown in Fig. 6 @§ht). The re-
sulting fit parameters and the integral aboveAhH L found in data are given in Tab. 6.15.
This extrapolation estimatesmvalue of 70 x 1014, corresponding to a significance of
7.40 0. Qualitatively, this is about the significance we would estpieom such a large
ANLL value.

For the two and threE, peak alternate hypotheses, we can generate enough Toy Monte
Carlo samples to find several with a greaM\LL than in data, so the-values listed in
Tab. 6.14 are easily calculated. However, we again had toverfailed fits using the same
quality cuts (accurate error matrix, EDM 0.01, and default fig? < 100) as for the null
hypothesis. Th&NLL distributions for the two and threg, peak hypotheses are shown in
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Table 6.15: Parameter values for a decaying exponential tiitet AN LL
distribution of background-only Toy Monte Carlo samplesvghan
Fig. 6.28. The exponential is fit only to the tail of the distriion,

ANLL > 12.
Parameter Value
Po 145+ 22
P1 1.56+0.16
Fit Probability 45%

Integral above 42.4 8x 10~/

Figs. 6.29 and 6.30 respectively.

From thep-value studies, we can conclude that the null hypothesigdkided at the
5 o level at least. Each of the four peaks is on the order ofs3gnificance on its own,

except for theig peak which is slightly weaker than the other three peaks.
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‘ Narrow Gaussian Detector resolution,c = 1.2 MeV/c?
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po 3.989e-06 + 1.198e-08
pl 4214+7.6

0.0012
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Detector Resolution o
Figure 6.25: Plot of the likelihood constraints for the a¢bde resolution
parameteo. On the left is the narrow Gaussiarand on the right is the
wide Gaussiaw. Both histograms are modeled by Eq. (6.3), with=a

andp; =h.
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‘ Wide Gaussian detector resolution, o = 3 MeV/c?
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Figure 6.26: Modeling th&,, data by fits with only on&y, state pev'\gn
charge combination (left), and with no signal at all (right)
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‘ X for samples generated and fit with signal dchisquare

ANLL

50
40F

‘A NLL vs. X2 for samples generated with signal Emrﬁgiz 179314 e 19010
E Meanx 63.25
90F M:n y 38386 Mean 2214
E RMSX 1191
80 E RMSy  8.751 RMS  7.232
70 E
60F
30F
20F
10F !
E . . . L | | | | | | . . . . ey T R R
% 50 100 150 0 200 40 60 80 100
. 2 . 2
No Signal x Signal

Good Fits

Figure 6.27: Left: Distribution of théNLL versus thex? of a back-
ground fit to Toy Monte Carlo samples generated from Ipesig-
nal distribution. Thex? is calculated only in th&, signal region of
Q €[30,100 MeV/c?. TheANLL is calculated between a background
only fit and a fourZy signal fit to the same sample. TANLL value
found in data is shown on the plot. The plot on the right shdawes t
X2 distribution of the fourZ, signal fits to the same Toy Monte Carlo
samples.

X2 / ndf 267273
0 Prob 0.4451
= 107 po 14474221
[T F pl 1.566 + 0.163
©
@)
3
10
. F Value in data = 42.4
Value in data = 42.4
1t
! | ! ! ! C T IR RN N AT
40 60 30 40 50
No Signal A NLL No Signal A NLL

Figure 6.28: ThéANLL distribution for the null hypothesip-value cal-
culation. While theANLL value found in data is 42.4, the largest one
found in the Toy Monte Carlo samples was below 24, as shown en th
left. We extrapolated the tail of th8NLL distribution out to the value
found in data using a decaying exponential fit to the redibbiLL > 12,

as shown on the right. The fit parameters are given in Tab. 6.15
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Value in data = 15.3
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Two Peak A NLL

Figure 6.29: ThNLL distribution for the hypothesis of only one peak
per/\gn charge combination. The value of tA&ILL in data is marked

on the plot.
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Good Fits
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Figure 6.30: ThéANLL distributions for each of the hypotheses of only
threeZy peaks. There are different numbers of Toy Monte Carlo samples
in each distribution. The value of tlENLL in data is marked on each

plot.
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6.2.2 3, Fit Result

The result of the simultaneoug T andASTT" fit to £y, data is shown in Fig. 6.31, with
the fit results given in Tab. 6.16 and the correlation matiweig in Tab. 6.17. For this fit,
only the %y, signal parameters are left floating, so we are concernedthatltorrelations
between each of these parameters. From the correlatioixmatsee only two parameters
which are highly correlated, tiﬁ? Qvalue and th& — %, Q value. This is inescapable in
the simultaneous fit; because tﬁ;é peak is smaller than the other thiBgpeaks, it relies
on theZj — 2, mass difference to fix its location.

The value of the negative log likelihood, dtLL, given in Tab. 6.16 is also shown
superimposed on the Toy Monte CalNd.L distribution in Fig. 6.23. As indicated by its
position in this distribution, this is a good fit for a data gdenof this size. This is also
confirmed by thex? goodness of fit test, which gives a fit probability of 76% fadstfit to
the region around thEy, signal,Q € [0, 200] MeV/c?, which is shown in Fig. 6.32.

We also repeat th&y signal fit with the systematic variation likelihood congtita
described in Sec. 6.2.1. The results of this fit are condistéh the default fit to data, as

shown in Tabs. 6.18 and 6.19.
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Table 6.16: Parameter values from the fayrsignal fit to data. We
guote positive and negative statistical errors separateiyne likelihood

minima are asymmetric.

Parameter Value Parabolic Error Asymmetric Errors
Z, Q(MeV/c?) 55.9 0.951 (+0.973 —0.950)

Y events 59 14.2 (+14.6,—137)

Z Q(MeV/c?) 48.5 1.97 (+1.98 —2.17)

Z! events 32 12.1 (+125,-11.7)

Z) events 69 17.6 (+18.0,—-17.1)

Z:" events 77 16.8 (+17.3,-16.3)

Z; —Zp Q (MeV/c?) 21.2 1.92 (4+2.00,—1.94)

NLL —241604

Table 6.17: Correlation matrix for the follg, signal fit to data. Only the
2 Qvalue and th&} — 2, Q value show a high degree of correlation.

Parameter 1 2

3

4 5 6

15, Q 1000 Q162

Q151

22, events (0162 1000 —0.063

3 ZB“ Q 0.151 -0.063

1000

4Zb+ events —0.016 Q007 —0.052

53 events —0.122 -0.246

Q029

6%, " events —0.017 Q007 —0.010

72,-2,Q 0212 0088 —-0.712

—-0.016 -0.122 -0.017 -0.212

Q007 —-0.246 Q007

Q088

—0.052 Q029 -0.010 -0.712

1000 —-0.003 -0.164

—0.003 1000 —-0.003

—-0.164 -0.003 1000

Q074 —-0.040 Q080

Q074

—0.040

Q080

1000
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Table 6.18: Resulting values for constrained parameterszp signal
fit to data when systematic variations are included as hkeld con-
straints. The values of the seven non-constrained parasnate given

in Tab. 6.19.
Parameter 7 Param. Fit 19 Param. Fit
ATt Comb. bkg norm 87 (fixed) 8k 45
A" Comb. bkg norm 85 (fixed) 8B 44
AT B Had. norm 109 (fixed) 108 61
ATt B Had. norm 105 (fixed) 10% 59
ASTe AQ Had. norm 1572 (fixed) 1497 86
ATt A Had. norm 1541 (fixed) 155884
AT AQ Had. Qmax (GeV/c?) 0.12 (fixed) 01234 0.007
ATt AQ Had. Qmax (GeV/c?) 0.11 (fixed) 0110+ 0.005
Narrow Gauss. resolutiofGeV/c?) 0.00117 (fixed) (M0117+ 0.000006
Wide Gauss. resolutiofGeV/c?) 0.003 (fixed) 0003+ 0.00003
Isospin differencéGeV/c?) 0 (fixed), 0.0004 (expected) .@D040+ 0.00007
Width parametega 0.75 (fixed) 072+0.05
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Table 6.19: Result of the defauli, signal fit to data when systematic
variations are included as likelihood constraints. The benof standard
deviations from the default fou¥, signal model is shown in the last
column, and indicates the constrained parameters haeedlitect on the
results of the measurement.

Parameter

7 Param. Fit

19 Param. Fito difference

Z Q (MeV/c?)

2, events

%" Q (MeVic?)

Z. events

>, events

2" events

5; —Zp Q (MeVic?)

NLL

559+10

5914

485+2.0

3212

6918

TH17

212+19

—241604

560+0.9

63+ 14

485+1.9

31+12

77+19

74+18

210+18

—241625

-01

-0.3

0

0.08

-04

0.2

0.1
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Figure 6.31: Simultaneous fit to tigm~ and A" = signal in data.
The fit parameters are given in Tab. 6.16.
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Fit Prob. = 76%

50

40

30

Candidates per 5 MeV/c?

20

10

— Total Fit
— Background
— 3 o AT

Ty

it

50

40

30

20

——

10

— Total Fit
— Background
= o AT
> N

860"

L | L L L L
0.15 0.20

Q = m(Am) - m(A) - m, (GeVic®)

Figure 6.32: Simultaneous fit to tigm~ and AJT™ = signal in data,
focusing on the region around the signal peak®af [0, 200] MeV/c?.



6.2.3 Alternative X, Signal Fits

The/\g hadronization background was determined frorvaHiA Monte Carlo sample
which had to be reweighted twice to agree with data, as desttin Sec. 4.6.1 — first for
the /\g pt spectrum, and again for ther spectrum of tracks around tm;g. We also fit
the 3, data using alternate parameterizations ofmﬂehadronization background. These
fits serve as cross-checks of the systematic uncertainiesned in Sec. 7.2 for thgy,

background model. The fits in this section do not use the Ekii&od constraints.

Floating Normalization of /\8 Hadronization Backgrounds

The normalization of the\] hadronization background is fixed from the ratio of the
number of/\g in the Monte Carlo sample to the number/@@ in the data sample. As
a check of this normalization, we fit the data with thg hadronization normalization
allowed to float in the fit for both thédm and AJt™ subsamples. The fit is shown in
Fig. 6.33 and fit parameters are given in Tab. 6.20. The pasmearticularly the number
of /\8 hadronization events, vary only slightly from the defaatgmeters. The minimized
negative log likelihood of this fit is slightly lower than thaf the default fit, indicating
it may be a slightly better fit than the default. However, sitice two fits have different
numbers of floating variables, the likelihood differencamat be translated directly into a

goodness of fit test.
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Table 6.20: Parameter values from the fit to fedata with the/\g
hadronization background normalization floating. Alsowhdas the dif-
ference for each parameter from the default fbgisignal model.

Parameter Value Difference from default
ASTT AD Had. Norm  1548-45 —24
ATt AD Had. Norm  1493-45 —48
>, Q(MeV/c?) 55.9+0.9 0
2, events 63t 14 4
Z" Q(MeV/c?) 485+2.0 0
Z) events 32:12 0
2, events 7818 8
=" events 76£17 -1
5 —Zp Q(MeV/c?) 212+1.9 0
NLL —241620 ~-1.6
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Figure 6.33: Plot of &y, fit to data with theA? hadronization normaliza-
tion floating. The fit parameters are listed in Tab. 6.20.

Alternate Parameterization of A Hadronization Backgrounds

The default fourZy signal fit uses the functional form of Eq. (6.1) to parameeeri
the /\g hadronization background. There are many other shapes wd bave chosen
to parameterize this background, and which one we chose mageca systematic bias.
Another shape which describes this background well is theFR@" — D° background
shape, which also drops steeply at a cut-off value and thestsl@ut at high mass. This
PDF consists of the cut-off paramethr0 and three shape parametésA4, andB). The fit
of theD* — D° shape to the‘\g hadronization backgrounds from theTHIA Monte Carlo
sample is shown in Fig. 6.34 with the fit parameters given in. 8a21. The numbers of
events are scaled byZD8+ 0.042 as explained in Sec. 6.1.3.

We then perform the simultaneous fit to data using the alteida— D° background
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shape in place of the defam{g hadronization parameterization. As shown in Fig. 6.35
(left) and Tab. 6.22, there is virtually no shift in the fit pareters with the alternate shape,
indicating that the fit is fairly stable in regards to th@ shape parameterization. The

positive likelihood difference indicates this fit is sligghtvorse than the default fit.

Table 6.21: Parameter values for the shape and normatzafighe
AT and ATt subsample\Y hadronization backgrounds when mod-
eled by a RooFiD* — D° background PDF.

Parameter Nt AT

dnO (2840.4)x10%  (53+0.7)x10°°
C 0.0855+0.0003 0074+0.008

A —0.467+0.001 —0.37+0.02

B (-1.54+0.4) x10* (—22+0.5)x10°°
Number of events 7550123 7410+ 122
Scaled events 157D317 1541+ 311

Reweighted/\g Hadronization Backgrounds

Sec. 6.1.4 describes systematic variations of the funais®ed to reweight the track
pr spectrum of thePYTHIA /\g Monte Carlo sample, and the effect this has on /N@e
hadronization background shape. We use tloeréweighted up and reweighted dovwﬁ
hadronization parameterizations in a fit to data to checlsytséematic effect these shapes

have on th&y, measurement.
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Table 6.22: Parameter values from the fitipdata with a RooFiD* —
DO function for the/\g hadronization background shape. Also shown is
the difference for each parameter from the default tousignal model.

Parameter Value Difference from default
Z, Q(MeV/c?) 55.9+1.0 0

2, events o8- 14 -1

Z Q(MeV/c?) 485+2.0 0

Z! events 2912 -3

Z,~ events 68t 18 -1

Z:" events T4 17 -3

5 -3, Q(MeV/c?) 211420 -0.1

NLL —24157 3.4
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XINyo; =414/ 54=0.77
Fit Prob. = 90%

N 250 XNy =59.3/ 54=1.10 o 250
r Fit Prob. = 29% Q 8
=~

8.0‘ — ‘0‘.1‘ = ‘0.‘2‘ = ‘0.‘3‘ = ‘0.‘4‘ = ‘0.5 80 = ‘0‘.1‘ = ‘0.‘2‘ = ‘0.‘3‘ = ‘0.‘4‘ - ‘0.5
Q = m(A°r) - m(A°) - m(m) (GeVic) Q = m(A°rt) - m(A°) - m(m) (GeVic?)
Figure 6.34: RooFiD* — D° background PDF fits to tham (left) and

/\8Tf+ (right) subsample\g hadronization backgrounds from the default
reweighting of theeYTHIA Monte Carlo sample.

By construction, the normalization of the reweighted dowapghis too low to match
data, and that of the reweighted up shape is too high, so weatiow the/\g hadroniza-
tion background normalization to float in the fit to data. Theérameters are given in
Tabs. 6.23 and 6.24 with the fits shown in Fig. 6.36. 'Nﬁehadronization background
reweighting turns out to be one of the largest systematieainties on the numbers of

(%)+

Z,  events, as will be shown in Sec. 7.2.2. In these fits to dataseedarge shifts in the

numbers of\Q hadronization background aix™ events.

Floating Parameterization of/\g Hadronization Backgrounds

Reweighting thef\g track pr spectrum in theyTHIA /\8 Monte Carlo sample changes
the shape of thexg hadronizatiorQ distribution; as a cross check to the reweighting shown
in the previous section, we also perform a fit Where/s@dnadronization parameters,(y,

andQmay are allowed to float entirely. This fit is shown in Fig. 6.3%wihe parameters
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Table 6.23: Parameter values for a fit to figdata using a systemat-
ically reweighted down parameterization of th% hadronization. The
A9 hadronization background normalization is allowed to fioaboth
subsamples.

Reweighted down

Parameter Value Difference from default
AT AD Had. Norm  1485-44 —87
ADTT™ A Had. Norm  1553-45 12
Z, Q(MeV/c?) 55.940.9 0
2, events 66-15 7
Z" Q(MeV/c?) 485+2.0 0
Z. events 30:12 -2
>, events 83t 18 14
> " events 7317 —4
> —3ZpQ(MeV/c?) 212+19 0
NLL —241621 -1.7
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Table 6.24: Parameter values for a fit to the data using a system-
atically reweighted up parameterization of th% hadronization. The
A9 hadronization background normalization is allowed to fioaboth
subsamples.

Reweighted up

Parameter Value Difference from default
AT AD Had. Norm 149945 —73
ADTT™ AQ Had. Norm  1564- 46 23
Z, Q(MeV/c?) 55.940.9 0
2, events 60-14 1
Z" Q(MeV/c?) 487+2.1 0.2
Z. events 26-12 —6
>, events 7418 5
> " events 66:17 -11
> —3Zp Q(MeV/c?) 209+20 -0.3
NLL —241597 0.7
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To ensure that our default fol, signal fit to data sits in a stable global minimum,
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Figure 6.35: Fit to theS, data with alternaté\? hadronization back-
ground shapes. On the left, the defaﬂﬁ hadronization background
shapes are replaced with a RoobBit — D° function and the fit param-
eters are given in Tab. 6.22. On the right, the defaﬂlhadronization
background shapes are left floating in the fit and the fit patarmeare
given in Tab. 6.25.
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given in Tab. 6.25. Except for the number Bf~ events, the parameters are only very

slightly different than the default fodty, signal fit to data.

6.2.4 Likelihood Scans of the&, Parameters

we perform negative log likelihood\(LL) scans of each floating parameter. After the fit
converges, we fix all parameters but one, and plot the valubedfiLL as a function of
that one floating parameter. ThELL scans over a 2.6 range for all seven parameters are

shown in Fig. 6.37, where the minimiz&tLL has been fixed to zero in all cases. Clearly



Table 6.25: Parameter values from the fit Ig data with theAD
hadronization background shape and normalization floating

Parameter Value Difference from default
AT AL Had. Norm 1545: 45 ~27
AT AQ Had. o 0.45+0.01 -0.22
AT AD Had.y 1.1+0.1 0.24
AOTC AQ Had. Qmax (GeV/c?)  0.11+0.003 0
ATt AD Had. Norm 147754 —64
AT AQ Had. o 0.35+0.4 -0.31
ASTTE A2 Had.y 1.24+1.8 0.47
AT AQ Had. Qmax (GeV/c?)  0.1440.07 0.02
Z, Q(MeV/c?) 559+0.9 0
2, events 6418 8
Z Q(MeV/c?) 485+1.9 0
Z; events 32:12 0
Z, events 89 28 20
Z:" events 80t 18 3
Z; —Zp Q (MeV/c?) 21.3+1.8 0.1
NLL —241646 ~4.2
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Figure 6.36: Fits t&y data using d\g hadronization background shape
derived from alternate reweightings of theTHIA Monte Carlo track
pr spectrum. On the left is the reweighted down shape; the giwesl
up shape is shown on the right.

there is only one minimurlLL for each parameter. However, as we already see from the
comparison of parabolic errors to positive and negativersytheNLL is asymmetric as a

function of the parameters.

209



o

Proleitl?\,n !gf;log(lz)

o o

P;Ojsct.l_onmof’;log(Ll

5F ~ F —~4.0
240 =
of o, .0 o35
F O 35L o
L —- —=3.0
'5: “1_3_0; ul—
0: O,5EF 025
T c c
5t S20; %
£ ?,1'55 <g1.5
0oF E
F Q.o 210
£ 01'0; o
St {05 a05:
0t | | | 0.0E I 0.0 | | |
0.054 0055 0056 0057 0.058 40 60 80 0.046 0048 0050  0.052
SigmaBMinusMass SigmaBMinusNev SigmaBPlusMass
E ~4.0F —~
0 - -
o Shs! o
of —?3.0§ —?3-0
5t ‘B25E 525
E C ook €20
of _92.05 S
5¢ ¢61,5E 61'5
oF Laof Lio
: 2. o
St (05t o
o= 20 2060 00 % 80 w0 120 %% e 80 10 120
SigmaBPlusNev SigmaBStMinusNev SigmaBStPlusNev
—~ TF
=
Nt
o) 6F
2 L
T 5F
<
o ,f
c T
9 3t
= f
[&] L
Q%
o .
o
05018 0020 0022 6024 0.026
m(Z)-m(z)
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Chapter 7

Systematic Error Analysis

There are two main components to the systematic uncedaiftr both thé8** andX}
analyses — mass scale uncertainty, and systematic biasagsamptions made in the fit.

Both sources of systematic uncertainties are treated il 8etaw for the two analyses.

7.1 B** Systematic Errors

7.1.1 B* Mass Scale Systematics

One primary source of systematic uncertainty is the precisif the mass scale cali-
bration for the CDF Il detector. Much work has gone into miraimg this error source, as
documented in Ref. [56] for thB** analysis [12]. Théd** analysis used tracks around a
fully reconstructedd meson just as thB** analysis uses tracks around a fully reconstructed

B meson. After applying the mass scale calibration,@Rfieanalysis found the only mass
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scale systematics come from the propagation of the unogrtai the magnetic field and
the uncertainty in ionization corrections for the centnalew tracker (COT). These sources
of systematic uncertainty are the same forBieanalysis as for th®** analysis, and thus
we use thdd*™* error estimates. The systematic uncertainties from eaaftsedor the mass

difference measurement are listed in Tab. 7.1.

Table 7.1: Mass scale systematic uncertainties foBttieneasurement.
The “AM” column shows the uncertainty on a mass difference measure
ment, while the “Width” column shows the uncertainty on atithea-
surement. Table reproduced from Ref. [12].

Source AM (MeV/c?)  Width (MeV/c&)
COT corrections 0.1 0.0
Tracking/B field 0.1 0.2

7.1.2 B* Fit Systematics

With such a complicated fit model, there are many systematentainties associated
with assumptions made in the fit. Since we only report the masasurement from the
fit to the high purityB sample, the systematic uncertainties are only evaluatedeohigh
purity sample for thé3; andB; masses.

To estimate these fit systematic uncertainties, we createdaied fit with one parame-
ter or input changed from the defa@t* fit. We then evaluate this modified fit on the high
purity B sampleQ distribution, and use the resulting value of the fit paramsai®generate
200 Toy Monte Carlo samples. Each of these samples is first thiet@lefault model and
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then to the modified model. We take the difference betweefiriaeéparameter values for
the default and modified fits on the same sample and plot th#éseedces. For the fits

which converged successfully, these differences followaassian distribution. However,
there are some fits which were unable to find a true minimum launsl had problems con-
verging, and these appear as a very small constant bacldjabwalues far from the central
Gaussian. To account for these fits, we model the distribliypa Gaussian plus a small
constant background. The mean of the Gaussian is then takbe aystematic uncertainty
associated with changing that one parameter or input.

For each source of systematic uncertainty, the differefhtieese mass values between
the modified and default fits to the data sample are shown alithghe Gaussian means
of the Toy Monte Carlo distributions. The two measuremergsapected to be correlated,
since the parameter values of the modified fit to data are wsgdrterate the Toy Monte
Carlo samples from which the average systematic shift isitatied, so this is a cross-check
of the Monte Carlo results. All sources of systematic unoaigdrom assumptions made

in the fit are discussed below.

Detector Resolution Model

As described in Sec. 5.1.4, the detector resolution waaligitnodeled with four Gaus-
sian distributions. However, the two widest Gaussians arexpected to be well-modeled
by the Monte Carlo detector simulation and also contributke lto the overall detector

resolution, so only the two central Gaussians are used tehtlbe detector resolution in
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the fit to data. To estimate the uncertainty from using onlyahde Gaussian model of
the detector resolution, we generate Toy Monte Carlo samyiese each signal peak is
described by a Breit-Wigner convoluted with the four Gaussietector resolution model.
The systematic shifts in thB; andB; mass values caused by using the four Gaussian
resolution model in the Toy Monte Carlo samples are shown g1 Fil modeled by a
Gaussian plus a constant background. The mean values ofahssfans are quoted in
Tab. 7.2 along with the differences in the mass values betwedefault and modified fit

on the high purity data sample. This is a relatively smaltesystic uncertainty.

Table 7.2: Table of systematic uncertainties as a resukiafuwo Gaus-
sians instead of four Gaussians to modelBliedetector resolution. The
first row is the mean value of the differences for 200 Toy Modtelo
samples where the distribution is modeled by a Gaussiargptasistant
background. The second row is the value of the difference fiits to
the high purity data sample.

Source AB; Q (MeV/c?) ABj Q (MeV/c?)
Monte Carlo 0.032 0.019
Data 0.01 0.01

Detector Resolution Underestimation

The B** detector resolution is extracted from a signal oBGener at or Monte Carlo
simulation. While the detector simulation has been made@sgaie as possible, the simu-
lation may still underestimate the detector resolutionhgarestimating the error on charge

collection in the various detector components. A reas@aslimate of this underestima-
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[ Four Gaussian resolution function, A(B, Q value) ] X7/ ndf 35.04/12 [ Four Gaussian resolution function, A(B*, Q value) |/ ndf 52.65/7
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Figure 7.1: Plot of the difference in thg, (left) and B (right) mass
values when fitting with the default fit versus a fit using a f@aussian
detector resolution model. The plots are fit with a Gausslas @ con-
stant background, with the resulting systematic uncet&srguoted in
Tab. 7.2.

tion is less than 20%. To estimate a systematic uncertaioty tinderestimating the detec-
tor resolution, we use a modified fit where the widths of the @eaissians used to describe
the detector resolution are increased by 20%.
The systematic shifts in thg; andB; mass values caused by increasing the Gaussian

widths when generating the Toy Monte Carlo samples are showigi 7.2 modeled by

a Gaussian plus a constant background. The mean values Ghilgsians are quoted in
Tab. 7.3 along with the differences in the mass values betlee default and modified

fit on the high purity data sample. The systematic uncer&sritom underestimating the
detector resolution are a factor of 10 smaller than thosetouke resolution model, as
expected since the detector resolution is much smallertttemtrinsic width of each peak.

Thus we take only the uncertainty from the model as a deteesmiution systematic.
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Table 7.3: Table of systematic uncertainties as a resulORaincrease
in the widths of theB** detector resolution model. The first row is the
mean value of the differences for 200 Toy Monte Carlo samplesrev
the distribution is modeled by a Gaussian plus a constarkgoaand.
The second row is the value of the difference from fits to thyh fpurity
data sample.

Source AB; Q (MeV/c?) ABj Q (MeV/c?)
Monte Carlo —0.0022 0.0088
Data —-0.12 0.26

Increase resolution width by 20%, A(B, Q value) |

2323124 [ Increase resolution width by 20%, A(B*, Q value) | X7 /ndf 41.89/25
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Figure 7.2: Plot of the difference in thg; (left) and B; (right) mass
values when fitting with the default fit versus a fit with an 20%rease
in the width of the detector resolution. The plots are fit vataussian
plus a constant background, with the resulting systematoerainties
quoted in Tab. 7.3.

Background Shape

The shape of the non-combinatorial backgrounds, whichisbastracks from the un-

derlying event, pile-up events, hadronization of fy@and theB** wide states, are described
by a wide Gaussian plus a function of the form in Eq. (5.1). Ewsv, the true shape of
this background is unknown, and there are many other shapesould have chosen to

parameterize this background; the one we chose may causeeasyic bias. To check the
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dependence of the fit on the shape used to model the non-catobai background, we
also try a modified fit using a third order polynomial multgai by an exponential func-
tion to parameterize the background. The systematic shifise B; andB; mass values
caused by using a different parameterization of the backgton the Toy Monte Carlo
samples are shown in Fig. 7.3 modeled by a Gaussian plus gacotsckground. The
mean values of the Gaussians are quoted in Tab. 7.4 alongheittifferences in the mass
values between the default and modified fit on the high puata dample. Th&; andB5
mass values varied little as a result of changing the backgr@arameterization, and the
small variations are taken into account by the statisticalrdrom letting the background
parameters float in the fit.

The default background parameterization assumes the samien ofB come from
the decay of the wid8** states as from the narrod/* states. To estimate the systematic
uncertainty due to this assumption, we took the fractioB éfom the wideB** states as
0.5+ 0.2. In terms of the fraction of non-combinatorial backgro@vents going into the
wide Gaussian, this translates to 0.13 as the default v@laé,as the low value, and 0.16
as the high value. We also tried letting the normalizatiothefwide Gaussian float in the
fit rather than being constrained by the number of nafBétv The systematic shifts in the
B: andB; mass values caused by the different treatments of the nizatiah of the wide
background Gaussian in the Toy Monte Carlo samples are showigi 7.4 modeled by
a Gaussian plus a constant background. The mean values Gltlgsians are quoted in

Tab. 7.4 along with the differences in the mass values betwheedefault and modified fit
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on the high purity data sample.

For the systematic uncertainty due to parameterizatiohehbn-combinatorial back-
ground, we took the largest uncertainty on each of the medsguantities from all the
simulations listed above. Thus, the systematic unceptainttheB; mass is taken from
setting the fraction of events to 0.11 while the systematicentainty on theB; mass is

taken from allowing the normalization of the wide Gauss@fidat in the fit.

[ Bkg = polynomial * exponential, A(B, Q value) | [ x*/ndf 60.7/28 [ Bkg = polynomial * exponential, A(B*, Q value) | [ X*/ndf 66.81/35
Gauss. const 26,50+ 2.772 Gauss. const 12,56 + 1.369
Mean -3.023¢-05 + 2.03¢-05 r Mean -0.0001303 + 4.558e-05

Sigma 0.0002374 + 1.786e-05 25
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Sigma 0.000515 + 4.759¢-05
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Figure 7.3: Plot of the difference in thg; (left) and B; (right) mass
values when fitting with the default fit versus a fit with the kground
parameterized by a third order polynomial multiplied by apanential.
The plots are fit with a Gaussian plus a constant backgrouiid,tixe
resulting systematic uncertainties quoted in Tab. 7.4.
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Table 7.4: Table of systematic uncertainties as a resulffefent param-
eterizations of th&** background shape. Under each parameterization,
the first row is the mean value of the differences for 200 ToynMdCarlo
samples where the distribution is modeled by a Gaussiargptosistant
background. The second row is the value of the difference fiits to

the high purity data sample.

Source AB; Q (MeV/c?) ABj Q (MeV/c?)

Polynomial multiplied by exponential

Monte Carlo —0.030 —-0.13

Data —0.44 —0.55

Wide fraction floating

Monte Carlo —0.079 0.74

Data —0.09 0.72

Wide fraction = 0.11

Monte Carlo 0.49 0.093

Data 1.0 —0.08

Wide fraction = 0.16

Monte Carlo 0.0082 0.072

Data -0.01 0.12
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Figure 7.4: Plot of the difference in tii& (left) andB5 (right) mass val-
ues when fitting with the default fit versus fits varying the vidaussian
background component normalization. The first row uses aiffit the
normalization floating. The second row uses a fit with the radization
decreased to 0.11 (default value is 0.13). The third row sheit with
the normalization increased to 0.16. The plots are fit withaaugSian
plus a constant background, with the resulting systemato@riainties

quoted in Tab. 7.4.
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Intrinsic Width of the Narrow B** States

Due to the low statistics of the high puriB/sample, the fit is not sensitive to the width

of the narrowB** states. Therefore, the narr@®y width is fixed to 16 MeV/é, a theoretical

r(B1)
r(B3)

prediction with an error of 6 MeV/[8]. The ratio is fixed to be 1.0, but there is also
a theoretical prediction from Ref. [8] that the ratio shouéd®?9.
Unlike the background parameterizations, these two assongpare correlated as both

affect the narronB** widths. To estimate the true systematic uncertainty on ttuhyw

we vary both of these assumptions together. Thus, we gen€ogtMonte Carlo samples

I'(By)
r(B3)

with the ratio fixed to 1.0 and the narrow widths set to thé o values of 10 and
22 MeV/c?. We also generate Toy Monte Carlo samples with the t{a%% fixed to 0.9
for the default and:1 o values of the narrow width.

The systematic shifts in thB; and B; mass values caused by the variations in the
narrowB** width in Toy Monte Carlo samples are shown in Figs. 7.5 and hfeted by
a Gaussian plus a constant background. The mean values Gltlgsians are quoted in
Tab. 7.5 along with the differences in the mass values betweedefault and modified fit
on the high purity data sample.

Once again we take the largest uncertainty on each paraasetee systematic uncer-

tainty due to fixing theB** intrinsic width. Thus for the systematic uncertainty on Bie

r(By)

(B} = 1.0, while for

mass measurement we use the case whéBg) = 10 MeV/& and
the systematic uncertainty on tB¢ mass measurement we use the case whg) = 10

rBy) _
MeV/c? andgts = 0.9.
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Figure 7.5: Plot of the difference in thg, (left) and B (right) mass
values when fitting with the default fit versus fits with varieadues for
the B} width. In the first row, the fit use§(Bj) = 10 MeV/&, while in

the second row the fit uségBj) = 22 MeV/Z. In both case Egg is

fixed to the default value of 1. The plots are fit with a Gausgias a
constant background, with the resulting systematic uacdits quoted

in Tab. 7.5.
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Table 7.5: Table of systematic uncertainties as a resuliffereint pa-
rameterizations of the narro* widths. Under each parameterization,
the first row is the mean value of the differences for 200 ToynMdCarlo
samples where the distribution is modeled by a Gaussiargptasistant
background. The second row is the value of the difference fiits to
the high purity data sample.

(Bs) (MeV/c?) Source AB; Q (MeVic?) ABj Q (MeV/c?)
=10
10 Monte Carlo 0.16 —0.42
Data 0.93 —-1.2
22 Monte Carlo —0.054 —0.089
Data —0.02 0.29
2 =00
16 Monte Carlo —0.034 —0.046
Data -0.11 —0.07
10 Monte Carlo 0.13 —0.70
Data 0.93 -13
22 Monte Carlo —0.16 -0.11
Data -0.21 0.31
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Figure 7.6: Plot of the difference in th; (left) and B; (right) mass
values when fitting with the default fit versus fits with varieaues of

r(B3) and% fixed to 0.9. In the first row, the fit usdgB5) = 16
MeV/c? (the default value). In the second row, the fit ugéB}) = 10
MeV/c2. In the third row, the fit useg(B}) = 22 MeV/&. The plots
are fit with a Gaussian plus a constant background, with theltreg

systematic uncertainties quoted in Tab. 7.5.
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Fraction of B} Events

We also make several assumptions which directly affect timeber of events in the;

peaks. The first of these is the use of the theoretical pieditdr the branching ratio

BR(B; — Br)

—11+0.
BR(B; — BT 03

which fixes the normalization of thB; — B*11 peak relative to th&; — Brtpeak. The
second assumption fixes the relative fractioB6f which areB; — BT, we could not find
a theoretical value for this fraction, but there is currgmbufficient statistics to allow this
parameter to float in the fit. Therefore, we performed a piiakmy fit to the high purity
sample in which this parameter was allowed to float, and used/alue of ®23+ 0.08
(stat.) from this fit. As these assumptions both affect thalmer of events in th&; peaks,
we varied them both at the1 o level together.

The systematic shifts in th®; andB; mass values caused by varying the number of
events in theB; peaks in Toy Monte Carlo samples are shown in Figs. 7.7 thraugh
modeled by a Gaussian plus a constant background. The mases\af the Gaussians
are quoted in Tabs. 7.6 and 7.7 along with the differencelémtass values between the
default and modified fit on the high purity data sample.

Once again we take the largest uncertainty on each paraasetke systematic uncer-
tainty due to fixing the numbers & events. In this case, the largest uncertainty for both

B;—Bm _

. . s—B*
the B; and B mass measurement is taken in the case W%égea—,’: = 0.8 andG=— =
2

0.31.
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Figure 7.7: Plot of the difference in thg; (left) and B; (right) mass
values when fitting with the default fit versus fits with varyivalues of
the B; branching ratio. In the first row, the fit use€a branching ratio
of 0.8 (the default value is 1.1). In the second row, the fitsus&

branching ratio of 1.4. In both cases, the fractiorBgfevents is fixed
to the default value of 0.23. The plots are fit with a Gaussias p
constant background, with the resulting systematic uac#its quoted

in Tab. 7.6.
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Table 7.6: First table of systematic uncertainties as atresassump-
tions made for thé; branching fractions. Under each parameterization,
the first row is the mean value of the differences for 200 ToynMdCarlo
samples where the distribution is modeled by a Gaussiargptasistant
background. The second row is the value of the difference fiits to

the high purity data sample.

B5—B* %
B%TB;‘ Source AB; Q (MeV/c?) ABj Q (MeV/c?)
B5—Brm _
= 0.23
0.8 Monte Carlo 0.44 0.30
Data 0.86 —-0.16
1.4 Monte Carlo -0.21 —0.096
Data -04 0.14
Bs—Bm _
5 =0.15
1.1 Monte Carlo —0.36 —-0.27
Data —-0.72 0.18
0.8 Monte Carlo —0.53 —0.022
Data 2.3 —-0.18
1.4 Monte Carlo —0.55 —-0.44
Data —0.58 -1.8
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Figure 7.8: Plot of the difference in ti& (left) andBj; (right) mass val-
ues when fitting with the default fit versus fits varying 8igbranching

ratio and with the®-=" fixed to 0.15 (default is 0.23). In the first row,
the fit uses the default value 8f, branching ratio = 1.1. In the second
row, the fit usedB; branching ratio = 0.8. In the third row, the fit uses
B5 branching ratio = 1.4. The plots are fit with a Gaussian plusra c
stant background, with the resulting systematic uncerésrquoted in

Tab. 7.6.

228



Table 7.7: Second table of systematic uncertainties asit tfssump-
tions made for thé& branching fractions. Under each parameterization,
the first row is the mean value of the differences for 200 ToyMdCarlo
samples where the distribution is modeled by a Gaussiargptosistant
background. The second row is the value of the difference fiits to

the high purity data sample.

B5—B* *
BETBTT[[ Source AB; Q (MeV/c?) ABj Q (MeV/c?)
B5—Bm _

1.1 Monte Carlo 0.58 0.24
Data 1.0 0.17

0.8 Monte Carlo 1.8 0.57
Data 2.8 0.28

1.4 Monte Carlo 0.28 0.14
Data 0.36 0.15
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Figure 7.9: Plot of the difference in ti& (left) andBj; (right) mass val-
ues when fitting with the default fit versus fits varying 8igbranching

ratio and with theBEB;,f“ fixed to 0.31 (default is 0.23). In the first row,
the fit uses the default value 8f, branching ratio = 1.1. In the second
row, the fit usedB; branching ratio = 0.8. In the third row, the fit uses
B5 branching ratio = 1.4. The plots are fit with a Gaussian plusra c
stant background, with the resulting systematic uncerésrquoted in
Tab. 7.7.
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Smearing Caused by Photon Release 8" Decay

The final systematic effect on the narr®V* peaks is the energy of the photon from
B* decays, which i€ (y) = 45.78-+0.35 MeV/c [1]. Although the error on this energy is
small, it is comparable to the size of the previous systematcertainties. We again use a
+1 o variation of this value to estimate the systematic uncetyai

The systematic shifts in thB; andB; mass values caused by varying the energy of
the photon by+1 o in Toy Monte Carlo samples are shown in Fig. 7.10 modeled by a
Gaussian plus a constant background. The mean values ofahesfans are quoted in
Tab. 7.8 along with the differences in the mass values betlee default and modified
fit on the high purity data sample. There is a slightly largestamatic shift from taking
E(y) = 45.43 MeV/c?, so we use this scenario to determine the systematic uintésa

on theB; andB; mass measurement.

Parameterization of the B* Contribution

With experimental confirmation only of tHgf, — BK state, the contribution ds* to
theB** Q distribution is difficult to estimate. The parameterizatissed in the default fit is
a single Gaussian fit to the smeared peaks oBthe- B(*)K state generated in theyTHIA
B** sample described in Sec. 5.1.4.

We use two alternatBg* parameterizations to estimate the resulting systematern
tainty. The first is the double Gaussian parameterizatiageriged in Sec. 5.1.4. As the

widths of theBg, signal in ourPYTHIA Monte Carlo sample were set to 5 MeViather
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Table 7.8: Table of systematic uncertainties as a resutteofibcertainty
on the photon energy frorB* decay. For each parameterization, the
first row is the mean value of the differences for 200 Toy Motelo
samples where the distribution is modeled by a Gaussiargptasistant
background. The second row is the value of the difference fiits to
the high purity data sample.

Source AB; Q (MeV/c?) ABj Q (MeV/c?)

E(y) = 45.43 MeV/é

Monte Carlo 0.059 0.092

Data 0.12 0.02

E(y) = 46.13 MeV/@

Monte Carlo —0.049 —0.087

Data —-0.13 —0.01

than the theoretical prediction of 20 MeV/ave also modified the single Gaussian param-
eterization by increasing the Gaussian widtto four times its default value. For both of
these parameterizations, the normalization oftieremains fixed to the same value used
in the default fit.

The systematic shifts in th®, andB; mass values caused by the parameterization of
the Bg* component in the Toy Monte Carlo samples are shown in Fig. ihddeled by
a Gaussian plus a constant background. The mean values Gltlgsians are quoted in
Tab. 7.9 along with the differences in the mass values betweedefault and modified fit
on the high purity data sample.

For the systematic uncertainty due to parameterizatiohei}* contribution, we took
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Figure 7.10: Plot of the difference in ti& (left) and B} (right) mass
values when fitting with the default fit versus fits varying #reergy of
the photon from thé* decay. In the first row, the fit uses a decreased
energy of 4543 MeV/c? (default value is 458 MeV/c?). In the sec-
ond row, the fit uses an increased energy afl3MeV/c?. The plots
are fit with a Gaussian plus a constant background, with theltieg
systematic uncertainties quoted in Tab. 7.8.

the largest uncertainty on each of the measured quantitbes the two alternate param-
eterizations. Thus, the systematic uncertainty onBhenass is taken from the double
GaussiarB$* parameterization while the systematic uncertainty onBhenass is taken

from increasing the width of the single GaussEiii parameterization.

Normalization of the Bg* Contribution

In addition to a fixed parameterization of tB§ component, the number &* events

is fixed by the ratio oB;* to B mesons in th@ YTHIA Monte Carlo simulation. To estimate
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Table 7.9: Table of systematic uncertainties as a resulleparameter-
ization of theBS* component. For each parameterization, the first row
is the mean value of the differences for 200 Toy Monte Carloptam
where the distribution is modeled by a Gaussian plus a conhbtck-
ground. The second row is the value of the difference fromtditthe
high purity data sample.

Source AB; Q (MeV/c?) ABj Q (MeV/c?)

B:* double Gaussian parameterization

Monte Carlo —0.086 —0.036

Data —-0.11 0.02

B¢* single Gaussian, increased width

Monte Carlo 0.049 0.061

Data 0.02 0.01

the systematic uncertainty on this normalization factag, wge a modified fit where the
number ofB{* events is allowed to float in the fit without any constraints.

The systematic shifts in tH& andB5 mass values caused by allowing the normalization
of the B{* component to float in the Toy Monte Carlo samples are showngn Fil2
modeled by a Gaussian plus a constant background. The mkees i the Gaussians are
guoted in Tab. 7.10 along with the differences in the massegbetween the default and

modified fit on the high purity data sample.
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Figure 7.11: Plot of the difference in ti& (left) and B} (right) mass
values when fitting with the default fit versus fits with alt@t@B{* pa-
rameterizations. In the first row, tH&* component is modeled by a
double Gaussian distribution. In the second row, the widte single
Gaussian used to model tB¢* component has been increased by a fac-
tor of four. The plots are fit with a Gaussian plus a constaokéaund,
with the resulting systematic uncertainties quoted in Ta®.

7.1.3 B* Systematics Summary

The summary of all systematic uncertainties due to the meae saind assumptions
made in the fit to data is given in Tab. 7.11. We use only thelabtswgalue of each system-
atic shift rather than accounting for shifts in the positivel negative directions separately.
The final row in this table lists the total systematic unaettas which will be quoted for

the B; andB; mass measurements.
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Table 7.10: Table of systematic uncertainties as a reswltl@ving the
normalization of theB{* component to float in the fit. For each parame-
terization, the first row is the mean value of the differenfoe200 Toy
Monte Carlo samples where the distribution is modeled by as€an
plus a constant background. The second row is the value afitfes-
ence from fits to the high purity data sample.

Source AB; Q (MeV/c?) ABj Q (MeV/c?)
Monte Carlo -0.17 -0.15
Data —0.26 -0.18
\ B, normalization floating, A(B, Q value) | X°/ ndf 61.94/20 \_Bsnormallzauon floating, A(B*, Q value) | X/ ndf 48.48/ 26

Gauss. const 30.49+ 3.024 45 = Gauss. const 23.59+2523

Mean -0.0001701+ 1.894e-05 E Mean -0.0001536 + 2.48e-05
Sigma 0.0002306 + 1.648e-05 40— Sigma 0.0002848 + 2.462e-05

Bkg. const 0.1476 + 0.04554 35 E Bkg. const 0.2056 + 0.05681
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Figure 7.12: Plot of the difference in tl#& (left) andB5 (right) mass
values when fitting with the default fit versus a fit where thenmaliza-
tion of theBs* component is allowed to float in the fit. The plots are fit
with a Gaussian plus a constant background, with the regutystem-
atic uncertainties quoted in Tab. 7.10.
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Table 7.11: Table of all systematic uncertainties. The fioalshows the
total systematic uncertainty on tl&* measurements, which is the sum
in quadrature of the individual contributions.

Source AB; Q (MeV/c?) ABj Q (MeV/c?)
COT corrections 0.1 0.1
Tracking/B field 0.1 0.1
Detector resolution 0.032 0.019
Background shape 0.49 0.74
B** intrinsic width 0.16 0.70
B5 fraction 1.8 0.57
E(y) measurement 0.059 0.092
B shape 0.086 0.061
Bs* normalization 0.17 0.15
Total 1.9 1.2
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7.2 2, Systematic Errors

7.2.1 2y Mass Scale Systematics

For theZy analysis, the source of the mass scale systematic undgrigithe same
as for theB™* analysis: the precision of the calibration. However, fa By masses we
employ a more sophisticated technique to estimate the dliiés uncertainty for each of
the measured;, Q values.

To determine the systematic uncertainty due to calibraifdhe energy scale, we com-
pare the masses of th, 39, i+, andA;T particles measured at CDF with the world
average values after removing the CDF measurements [1]hEse tdecays which release
little kinetic energy, the figure of merit is th@-value; this is defined as th&M value less
the pion mass (or two pion masses, in the case of\fig. In a previous analysis, it has
been shown that the systematic uncertainity orQh&lue may be approximated as linear,
0Q =a-Q+dm[76]. We thus plot the difference between the CDF and worldaye
mass measurements as a function of@helue of the decays, and fit the graph to a linear
function. This linear function is then evaluated at MpeQ value to give an estimate of the
systematic uncertainty.

To avoid accounting for correlations between the slope &ed-intercept in the fit
function, we introduce an offset of the fit variable equalite I, Q value. For example,
theZ;" Q value is 48.5 MeYc?, so the fit takes the fordQ = a- (Q — 48.5) +dm. In this

case, the interceg@mis the bias on th€) value.
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The mass difference graph is shown in Fig. 7.13 with four &t for eacly;, state,
and the fit parameters are given in Tab. 7.12. Due to the largertainties on th&2, 5+,
and/A\:" mass measurements, there are large statistical uncersaamt the parameters of
these linear fits. Since the value of tantercept is much smaller than its statistical error,
we take the error on the intercept as the mass scale systemmagrtainty. To calculate
a systematic uncertainty on the mass differeixge; >, Q, we take the slope of the line
and multiply it by the mass difference value. As the slopenslter than its statistical
uncertainty, we use the error of 0.004 M/e‘,&? and multiply it by the mass difference of
21.2 MeV/c?. This results in a relative mass shift ©f0.09 MeV/c? which we round up
to 0.1 MeV/c? for the mass scale systematic uncertainty ordthe 2, Q value. The mass

scale calibration is the dominant systematic uncertainttheX, Q measurements.

Table 7.12: Fit parameters and mass scale systematic amtexs for
the =, mass difference measurement. All are in units of Med/

Particle Q Slope Intercept Fit Prob.
zr 48.5 —0.001+0.004 —-0.0064+0.19  58%
Z, 55.9 —-0.001+0.004 -0.01+0.22 58%

it 69.7 —-0.001+0.004 -0.03+0.28 58%

- 77.1 —-0.001+0.004 -0.03+0.32 58%
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Figure 7.13: Graph of th®*, 39, +*, and A" mass differences be-
tween the CDF measurements and the world average valuegdolet-

sus theQ value of each decay. The graph is fitted with four linear func-
tions, one for eachy, state, to determine the mass scale systematic un-
certainty at eachy Q value.

7.2.2 2y Fit Systematics

The systematic uncertainties related to assumptions nmatteifit are calculated for
2 in almost the same manner as ®t. For theX, analysis, we generate 500 Toy Monte
Carlo samples instead of only 200 as in Bié analysis. The, fit is also more stable than
the B** fit, due to the fact that th&, backgrounds are all fixed in the fit. Thus, the sys-
tematic shift distributions are fit with only a Gaussian wlgttion, rather than a Gaussian
plus a constant background. Occasionally, failed fits apagan unnatural “spike” in the
distributions, but to the first order these do not affect theamof the Gaussian fit. Some
distributions also have non-Gaussian tails (see for exanipd. 7.17). In these cases, the

Gaussian mean is usually larger than the average valuendgtaa slight overestimation
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of the systematic uncertainty rather than an underestmati

We compute systematic uncertainties on the number of ewerischZy, peak as well
as on th&, Q values. For the number dﬁb*)i events, some systematic shifts occur pre-
dominantly in one direction, such as the systematic uniceytan the/\g hadronization
background shape. Consequently, we quote positive andiveeggistematic uncertainties
separately on all measured quantities.

The following paragraphs each describe a source of sysieonatertainty in the fit,
the variations used to determine the systematic shift di,eatd the value of each system-
atic shift. We also evaluate the uncertainty on ﬂ@é Q values, which are equivalent to
the Zbi + (2}, — Zp) Q values, in order to quote an accurate systematic uncertamthe

absolutez;= masses.

A Sample Composition

The normalizations of the threg, backgrounds, described in Sec. 6.1.3, are all deter-
mined from theA{ invariant mass fit described in Sec. 4.5. This parametéoizaff the
/\8 mass has both statistical and systematic uncertaintieiagsd with it, particularly
from the Monte Carlo templates used to derive the many backgrshapes. Thus, tmg
sample composition (percentage of background events velnecfrom prompf\g baryons,
B mesons, or combinatorial background) has associatedsefforevaluate the systematic
shift from uncertainty in the!\g sample composition, we shift the relative normalizations

of the background components in the fit. As ﬂc@ehadronization background is by far the
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largest background, we take some number of events away fienibackground and add
them in equal numbers to the two smaller backgrounds, thér@torial and thé meson
hadronization.

We first tried taking 100 events fromg hadronization background and adding 50 to
each of the smaller backgrounds. This showed little sysiierafiect, as seen in Fig. 7.14.
We then subtracted 200 events fraﬁﬁ hadronization background, adding 100 to each of
the smaller backgrounds. This also had a fairly small effastseen in Fig. 7.15. Fi-
nally, we took 400 events fromg hadronization background and added 200 to each of the
smaller backgrounds, more than doubling the number of eviarthe two smaller back-
grounds. This is a very extreme change in the sample conusithe systematic shifts
for this scenario are shown in Fig. 7.16. The systematit¢sstuf each of the seven floating
parameters under each scenario are shown in Tab. 7.13. ifhedse, where 400 events
are removed from thAﬁ hadronization background, is used for the systematic tsioty
due to/\g sample composition because it produces the largest uidez$a This is a small
systematic error even under such an extreme case, indjcaahour result is not sensitive
to the/\g sample composition and is, to the first order, independenmefﬁg invariant mass

parameterization.
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Table 7.13: Table of systematic uncertainties onIpheneasurement as
a result of shifting a given number of events from m%hadronization
background to the two smaller background componentd3 theson and
combinatorial backgrounds. The systematic uncertaingyamh parame-
ter is computed as the Gaussian mean value of the differeztaebn the
default and modified fit parameters for 500 Toy Monte Carlo dasp

Parameter 100 events 200 events 400 events
2, Q (MeV/c?) —0.009+0.001 —-0.014+0.001 —-0.029+0.002
Z, events 0143+0.004  (0322+0.004 068+0.01

Zb+ Q (MeV/cZ) 0.007£0.001 001440.002 00274 0.003

ZBL events B84+0.01 161+0.02 3304+ 0.04

2, events 0099+ 0.004 021+0.01 039+0.01

Z;Jr events 183+0.01 366+ 0.02 7.28+0.03

5 —%pQ(MeV/c?) 0.0154+0.001 Q029+0.002  Q052+0.005
2, Q (MeV/cz) 0.007+0.001 0014+ 0.002 Q017+0.003
Z’t‘f Q (MeV/c?) 0.023+£0.001 00434 0.002 Q089+ 0.003
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Figure 7.14: Plot of the difference in ti¥g fit parameters when fitting
with the default fit versus a fit where 100 events have beersfeaed
from the/\g hadronization background to the two smaller backgrounds.
The distributions are modeled by a Gaussian distributiatt, the result-

ing systematic uncertainties quoted in Tab. 7.13.
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Figure 7.15: Plot of the difference in ti¥g fit parameters when fitting
with the default fit versus a fit where 200 events have beersfeaed
from the/\g hadronization background to the two smaller backgrounds.
The distributions are modeled by a Gaussian distributiatt, the result-

ing systematic uncertainties quoted in Tab. 7.13.
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Figure 7.16: Plot of the difference in ti¥g fit parameters when fitting
with the default fit versus a fit where 400 events have beersfeaed
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The distributions are modeled by a Gaussian distributiatt, the result-

ing systematic uncertainties quoted in Tab. 7.13.
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Parameterization of the/\g Hadronization Background

The shape and normalization of m@ hadronization background are both taken from
aPYTHIA /\8 Monte Carlo simulation which must be reweighted to agree déta. Con-
sequently, there are several possible sources of systeuratertainties in the parameteri-
zation of this background, which are described below.

The first systematic to consider is the normalization of/\ﬁdaadronization shape. This
normalization is taken from the ratio of the numbeV‘(ﬂfin the Monte Carlo sample to the
number ofAQ in the data sample. The numberA{ in data is given by thé\) mass fit,
which was already tested through mg sample composition. However, if the number of
/\g in the Monte Carlo is incorrect even after reweightingﬂgepT spectrum, the normal-
ization could also be incorrect. To test this, we kept thepshaf the/\g hadronization
background fixed but shifted the number of events.

If the normalization of the\Q hadronization background is allowed to float in the fit,
we find a statistical error of about 45 events on both /Nﬁer and /\grr+ backgrounds
(Sec. 6.2.3). Thus we generate Toy Monte Carlo samples with At and A2rt™ A9
hadronization backgrounds either increased or decreasdfl bvents. The resulting sys-
tematic shifts are shown in Figs. 7.17 and 7.18, and giveralm T.14. The effect on the
mass measurements is minimal, but there is some systerhitiofsthe numbers ot}
events. We take the largest value as the systematic urdgrtan each parameter due to
fixing the/\g hadronization normalization.

The second systematic source to consider is the paranaienof the/\g hadroniza-
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Table 7.14: Table of systematic uncertainties as a resughiffing the
number of events in thag hadronization by 45. The systematic uncer-
tainty on each parameter is computed as the Gaussian mesnofdahe
difference between the default and modified fit parametar§00 Toy
Monte Carlo samples.

Parameter AQ Had. Norm—45 A2 Had. Norm:-45
o Q(MeV/c?) —0.002+0.001 Q009+ 0.002
2, events 23+0.01 —2.20+0.01
i Q (MeV/c?) —0.013+£0.002 0013+0.002
Z. events 207+0.01 —2.09+0.01
2, events 477+0.02 —4.724+0.03
Z: " events 481+0.02 —4.80+0.03

5i —%p Q (MeV/c?) 0.135+0.003 —0.129+0.002
2 Q (MeV/c?) 0.133+£0.003 —0.133+£0.003
5+ Q (MeV/c) 0.122+0.003 ~0.12840.003

tion background. An alternate parameterization using theFiR®* — D° PDF is described

in Sec. 6.2.3. To determine the size of this systematic taicty, we generate Toy Monte
Carlo samples with thB* — D° background and then fit with the default background shape
as well as the alternate shape. The systematic shifts avenshoFig. 7.19 and given in
Tab. 7.15. As expected, there is very little shift in eneasurements and a small effect
on the number of events.

The third and final source of systematic uncertaintiesirejab the/\g hadronization
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Table 7.15: Table of systematic uncertainties as a resukiofy an alter-
nate parameterization, the RooBit — D° PDF, of theAD hadronization
background. The systematic uncertainty on each paranstemputed
as the Gaussian mean value of the difference between theldefal
modified fit parameters for 500 Toy Monte Carlo samples.

Parameter Systematic Shift
. Q(MeV/c?) —0.011+0.001
2, events 2684 0.004

" Q(MeV/c?) 0.013+0.001

Z events 1164 0.01

2, events 826+ 0.004
2" events 276+0.02

5 —%p Q(MeV/c?)  0.038+0.002
5 Q(MeV/c?) 0.029+ 0.002

T Q (MeVv/c?) 0.053-0.002

background is the effect of reweighting tire THIA Monte Carlo trackpt spectrum to
agree with data. The procedure for thes*Reweighted Down” and “Reweighted Up”
/\g hadronization parameterizations has been described in6Sked, and the fit of these
alternate shapes to data is shown in Sec. 6.2.3. To estimatystematic shift associated
with this reweighting, we took the background shapes frofm. a7 and the’\grr and
/\8T[+ hadronization normalizations from Tab. 6.23, and gendraty Monte Carlo with

these as the inpmsg hadronization parameterization. The resulting systersdtifts are
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shown in Figs. 7.20 and 7.21, and summarized in Tab. 7.16xpesoted, this is one of the

dominant sources of systematic uncertainty on the numbgg e¥ents.

Table 7.16: Table of systematic uncertainties as a resuisioig alter-
nate reweightings of thag hadronization background. The systematic
uncertainty on each parameter is computed as the Gaussamvakie
of the difference between the default and modified fit paransdor 500
Toy Monte Carlo samples.

Parameter

A Had. Reweighted Down A Had. Reweighted Up

Z, Q(MeV/c?)

2, events

> Q(MeV/c?)

Z events

2.~ events

2. events

5i —%p Q (MeV/c?)
%5~ Q (MeV/c?)
it Q(MeV/c?)

—0.0004-+0.002

738+0.02

—0.1124+0.004

232+0.01

14/+0.04

458+0.01

0.314-£0.006

0.3174+0.005

0.16640.004

0038+ 0.001

1844+0.01

—0.050+0.003

—-1.78+0.01

523+£0.02

—2.88+0.01

Q078+ 0.004

0117+0.004

0022+ 0.002
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>, Detector Resolution

The detector resolution is modeled by a double Gaussiarikdison taken from the
PYTHIA 2, Monte Carlo sample, as described in Sec. 6.1.5. As irBtlieanalysis, we
expect the Monte Carlo may slightly underestimate the deteetsolution. We account
for this systematic by generating Toy Monte Carlo samples Wit detector resolution
widths increased by 20% harrow = 1.4 MeV/c? andoyige = 3.6 MeV/c?. The effects
on the floating parameters are shown in Fig. 7.22. The sysiesfafts are summarized in

Tab. 7.17. The effect of this systematic is very small.

2} Intrinsic Width

The intrinsic width of eaclxy, peak is calculated from its me&hvalue using Eq. (2.7).
This equation depends on a paramejgr from the fit to theZ{ ™ width (Fig. 2.6), this
parameter is measured to = 0.75+ 0.05.

To incorporate the uncertainty @a, we substitute the & values ga = 0.70 andga =
0.80) into the natural width equation and generate Toy M@ado samples from this pa-
rameterization of th&y intrinsic widths. The resulting systematic distributicare shown
in Fig. 7.23 forga = 0.70 and Fig. 7.24 foga = 0.80. The mean values are given in
Tab. 7.18 for both cases. For every parameter, we see thaystematic shift changes sign
when the value ofa changes from low to high, as expected. The uncertaintiegdually

symmetric for all parameters as well.

256



Table 7.17: Table of systematic uncertainties as a resuicogasing the
widths of the double Gaussian detector resolution model($$.2The

systematic uncertainty on each parameter is computed aSahssian
mean value of the difference between the default and modifipdram-

eters for 500 Toy Monte Carlo samples.

Parameter Systematic Shift
5 Q(MeV/c?) —0.011+0.002
2, events B4+0.01

Z" Q(MeV/c?) —0.0144-0.003
Z) events @25+ 0.01

Z,~ events 8+ 0.01

Z;" events ®1+0.01

5 —Zp Q(MeV/c?)  0.016+0.003
57 Q(MeV/c?) 0.003+0.002

T Q(MeVv/c?) 0.001-++0.002
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Figure 7.22: Plot of the difference in tl2g fit parameters as a result of
increasing the widths of the double Gaussian detectorutsnlmodel
by 20%. The distributions are modeled by a Gaussian distoibuwith
the resulting systematic uncertainties quoted in Tab..7.17

258



Table 7.18: Table of systematic uncertainties as a resulnoértainty
in the parametega used in the calculation of thEy intrinsic widths.
The systematic uncertainty on each parameter is computtx &aus-
sian mean value of the difference between the default andfieddit

parameters for 500 Toy Monte Carlo samples.

Parameter ga=0.70 ga =0.80
2, Q (MeV/CZ) —0.005+0.004 Q009+ 0.005
2, events —3.44+0.06 336+0.07
5 Q(Mev/c?) 0.012:+0.004 —0.021+0.005
Zg events —1.974+0.05 180+0.05
2, events 165+ 0.04 —1.67+0.04
> events (B2-+0.03 —0.79+0.03

S5, Q(MeV/c?) —0.074+0.004 Q072:+0.004
=i~ Q (MeV/c?) ~0.073+0.004 Q082+ 0.005

%7 Q (MeV/c?) —0.0644+0.003 Q053+0.003
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2, — Zp Mass Difference

Due to isospin splitting, the mass differenca&; ") — m(Z}) = A andm(Zf™) —
m(Z, ) = A._ are not expected to have the same value, as shown in Sec. @vever,
because of the low statistics in our sample we constrairethesss differences to the same
value in the fit, namelyn(Z; ") — m(Z)) = m(Z; ") —m(Z, ) = A..

To estimate the systematic bias from this assumption, wethes@redictionA, . =
A, + (0.4040.07) MeV/c? [20]. Taking only the worst case prediction, where the dif-
ference between the values is at its largest, wéset= A, +0.5 MeV/c? and generate
Toy Monte Carlo samples for this configuration. The resuligpgtematic shifts are shown
in Fig. 7.25 with the mean values given in Tab. 7.19. As exguicthe shift is negligible
for the numbers ok}, events, but does have a significant effect on@hmeasurements,

particularly theXy — >, Q value.

7.2.3 Zp Systematics Summary

Tab. 7.20 lists the value of all sources of systematic uag@st on the measurex, Q
values, while Tab. 7.21 lists the systematic uncertairdgrethe number of events for each
>y state. The uncertainties in the positive and negative tineg are accounted separately,

as some systematic shifts are asymmetric.
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Table 7.19: Table of systematic uncertainties as a resukiofj the same
mass differencel) for the positive {. ) and negativeX, ) hyperfine
mass splittings. The systematic uncertainty on each paearisecom-
puted as the Gaussian mean value of the difference betweeatethult
and modified fit parameters for 500 Toy Monte Carlo samples.

Parameter Ay =0, +05MeV/c?
> Q(MeV/c?) 0.060+ 0.002

2, events —0.084+0.006

Z" Q(MeV/c?) —0.1074+0.003

Z. events —0.004-£ 0.008

2, events —0.164+0.01

Z;" events 0L6-+0.01

Z; —Zp Q (MeV/c?) —0.260+0.004

5~ Q(MeV/c?) —0.18440.003

T Q(MeVv/c?) —0.390+0.003
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Figure 7.25: Plot of the difference in tRg fit parameters when the posi-
tive mass differencé). ., is shifted up from the negative mass difference,
A, by 0.5 MeV/c?. The distributions are modeled by a Gaussian dis-
tribution, with the resulting systematic uncertaintiestgal in Tab. 7.19.
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Table 7.20: Summary of all systematic uncertainties onzih€ measure-
ments in MeV/c?. Positive and negative uncertainties for each systematic
source are shown separately. The final row shows the totragsic uncer-
tainty, which is the sum in quadrature of the individual cdnitions.

Systematic >, Q Q L-%Q £ Q %'TQ

Mass Scale +0.22 +0.19 +0.10 +0.28 +0.32

-022 -0.19 -0.10 -028 -0.32

N Sample Comp. +0.0 +003 +0.05 +0.02 +0.09

—0.03 (010) 0.0 0.0 0.0

AJHad. Normalization ~ +0.009 +0.013 4014  +0.13 +0.12

—-0.002 -0.013 -0.13 -0.13 -0.13

A) Had. Parameterizaton ~.@  +0.013 +0.04  +0.03 +0.05

—0.011 Qo 0.0 0.0 0.0
PYTHIA Reweighting +0.04 00 +0.32 +0.32 +0.17

—0.0004 -0.11 00 0.0 0.0
Detector Resolution 0 0.0 +0.02 +0.003 +0.001

—0.011 -0.014 Qo 0.0 0.0
2y Intrinsic Width +0.009 +0.01 +0.07 +0.08 +0.05

—-0.005 -0.02 —0.07 —-0.07 -0.06

A, Hyperfine Splitting +0.06 00 0.0 0.0 0.0
0.0 -0.11 —0.26 -0.18 -0.39
Total +0.23 +0.19 +0.38 +0.45 +0.40

-022 -025 -0.32 -037 -0.52
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Table 7.21: Summary of all systematic uncertainties on thelyer ofZ
events. Positive and negative uncertainties for eachraggie source are
shown separately. The final row shows the total systematentainty,
which is the sum in quadrature of the individual contribonto

Systematic 2, events X events X~ events X" events
N Sample Comp. +0.7 +3.3 +0.4 +7.3
0.0 0.0 0.0 0.0
A Had. Normalization +2.2 +2.1 +4.8 +4.8
—2.2 2.1 —4.7 —-4.8
A Had. Parameterization +0.3 +1.2 +0.3 1+2.8
0.0 0.0 0.0 0.0
PYTHIA Reweighting +7.4 +2.3 +14.7 +4.6
0.0 -1.8 0.0 —-29
Detector Resolution +0.3 +0.3 +0.1 +0.2
0.0 0.0 0.0 0.0
>y Intrinsic Width +3.4 +1.8 +1.7 +0.8
-34 —-2.0 -1.7 -0.8
A, Hyperfine Splitting 00) 0.0 0.0 +0.16
—0.08 —0.004 —0.16 00
Total +85 +5.0 +1556 +103
—-4.1 -34 -5.0 —5.7
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Chapter 8

Summary

8.1 Summary of theB* Measurement

Using two fully reconstructed decay mod&s, — J/yK* andB* — DOrtt, in 370+ 20
pb~! of data collected by the CDF Il detector, we observe the twoomaB** states and

measure their masses. The results of this study show
e mM(B?) —m(B*) — my= 2694 3 (stat.)+£2 (syst.) MeV/é
e m(B;%) — m(B) — my = 319+ 5 (stat.)+1 (syst.) MeV/é

The Q values are easily converted into absolute masses by addaB or B* and
pion masses. There is a small uncertainty on the world aeemaaggses of thB and B*
which must also be added to the systematic uncertainty @flikelute mass values, but this

uncertainty is much less than the existing systematic emdhe analysis and has no effect.
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The world averag8™ andB* masses are 5278+ 0.4 MeV/c? and 532514 0.5 MeV/c?

respectively [1], which results in absolute mass values of
o m(BY) = 5734+ 3 (stat.)+2 (syst.) MeV/é
o m(Bi0) = 5738+5 (stat.)+1 (syst.) MeV/@

This analysis is clearly statistically limited. AnothBt*® analysis is in the process of
being completed, using approximately 1.5 ftof data with theB** candidates selected
by a neural network. Given this additional data, we intenan@asure the narroB**
widths and the yield oB* mesons from the decay of the narr@#* states. With a more
advanced background model, it may also be possible to depgheB** wide states from
the background. However, this analysis is still in progr@sd results are not available at
this time. We also intend to search for tB&* states, which will decay tB°rt". This will

be a more difficult measurement due to the mixing of#l@ndB® mesons.

8.2 Summary of thez, Measurement

We observe the fouEI(O*)i states in about.1 fb~! of data collected by the CDF II
detector. The widths predicted by Eq. (2.7) are in agreemhtour data. \We measure

theQ values ofz andZ!, and the averagg; — 2 mass splitting to be:
o M(Z)) —m(AD) — mp = 4853 (stat.) T52 (syst.) MeV/c?

e M(Z,) —m(AD) —my =559+ 1.0 (stat.)£2.0 (syst.) MeV/c?
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o M(Z}) —m(Zp) = 212729 (stat.) 705 (syst.) MeV/c?

As with B**, to go fromQ values to absolute masses we must add/tfi@nd pion
masses. Again, there is an uncertainty on the mass df\@h/ehich must be added to the
systematic uncertainty on the measurement. Using thetr&ef || mass measurement of

m(/\g) —=561974 1.2 (stat.)+1.2 (syst.) MeV/c? [76], thezgt absolute mass values are
m(%) = 58078739 (stat.)+1.7 (syst.) MeV/c?
e M(Z,)=58152+1.0 (stat.)£1.7 (syst.) MeV/c?

To quote the absolute masses f@ft, we have already calculated the systematic un-
certainties. The statistical uncertainties must also beutaed, taking into account the
correlations between thg, and &, — Z,) Q values. From the error matrix output of the
fit to data, the external error betwegp and €}, — 5p,) is —4.213x 10~7 GeV/c?, while
the error betweel,” and €, — Zp) is —2.574x 10-® GeV/c?. Using this along with the

uncertainties on th@ values yields absolute mass values of:
e m(Z;") =58290"15 (stat.) TT{ (syst.) MeV/c?
e M(Z}~) =58364+2.0 (stat.) 13 (syst.) MeV/c?
The number of events for each state are
o N(Z) = 32773 (stat.) "3 (syst.)

o N(Z,) =597 (stat.) ™3 (syst.)
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o N(Z;1) =771 (stat.) 720 (syst.)
o N(Z; ™) =69715 (stat.) "2° (syst.)

While the measurement of tl2g absolute mass values are limited by statistical uncer-
tainties and the systematic uncertainty on/Nﬁenass equally, the measurement of Hye
Q values is clearly statistically limited and will benefit gty from the addition of more
data. Another analysis is in progress to increase the datplsaised for this analysis by

loosening the’\g selection criteria and adding new data.

8.3 Conclusions

We are interested in non-perturbative QCD effects becawselhtave the potential to
obscure or confuse the effects in indirect searches foriphpeyond the Standard Model.
The best means of studying these non-perturbative QCD sffedb investigate the in-
teractions of quarks bound in hadrons. Due to the symmamedked when the hadron
contains one heavy quark, QCD effects are most easily stinyid¢ehding and measuring
as many heavy hadrons as possible. We then compare the ex@asus to the predictions
from a number of theoretical models.

Both theB**? andy, measurements show good agreement with the theoreticdtpred
tions based on heavy quark effective theories. The quantwmbars [, J, andP) still
need confirmation for all of these states, which will reqummach more data. It is en-

couraging that thus far the states have been found with thigepties (such as mass and

270



intrinsic width) that we expect. This shows us that the hegqugrk effective theories are a
good approximation to QCD in the non-perturbative regimewelieer, at this point no one
theoretical model stands out as preferred for predictiegptioperties of heavy hadrons.
The study of heavy hadrons should continue in the future h\Wibre data, it will be
possible to uncover more of thebaryon spectrum. The next likely candidates aredgle
and/\g0 states. It is also important to improve measurements of tlesvk members of
the spectrum — accurate measurements of the masses, vadthifetimes of each state,
confirming the quantum numbers, and measuring the polanzaf theZ, states are only

a few possibilities.

1The discovery of th&, at the CDF and D@ experiments was announced in June 2007 [77].
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Appendix A

Hadronic Two Displaced Track SVT

Trigger

The three separate trigger paths for the hadronic two displ&rack SVT trigger are:
the nominal B_.CHARM), the low pt (B_.CHARM.LOWPT), and the highpr (B_.CHARM HI GHPT).
The trigger criteria for each path are described in detdiefh [54], and summarized in the

following sections.

A.1 TheB CHARMTrigger Path

This is the nominab hadronic two displaced track SVT trigger (TTT). In order to
be used at high luminosities, it must be severely prescafgdhe highest luminosities

(> 250x 10°9s~1 cm~2), the TTT path is not included in the trigger selection.
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Level-1

At L1, this trigger path looks for

Two tracks with opposite charge

4 XFT hit layers for each track

XFT pr > 2.04 GeV/c for each track

Opening angle between the tracks 60A@ < 135°

Scalarpt sum:Zpr > 5.5 GeV/c

Level-2

At L2 the silicon SVT information is added. The requiremeants
e Two tracks with opposite charge

SVTXx?< 25

SVT pr > 2 GeV/c for each track

120pm < |do| < 1 mm for each track

Opening angle between the tracks 6f2Aqy < 90°

Scalarptr sum:Zprt > 5.5 GeV/c

Lyy > 200pm
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Level-3

At L3, the SVT tracks are matched to COT tracks by requiringonity in curvature
andg@y. The SVT measurement is used for the trdgkvith the other four track parameters
taken from the COT measurement. Pairs of these hybrid traekshan subject to the

following requirements:

e Two tracks with opposite charge

120pm < |do| < 1 mm for each track

pt > 2 GeV/c for each track

In| < 1.2 for each track

|AZp| < 5 cm between the tracks

Opening angle 2< Agy < 9¢°

Scalarptr sum:Zpr > 5.5 GeV/c

Lyy > 200um

A.2 TheB CHARMLOAPT Trigger Path

The B.CHARM.LLOWPT trigger path is designed to complement Ba€HARM trigger path

by filling the trigger bandwidth at low luminosities. The tagements are similar but not
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quite as strict; for example, the tracks are not requiredaelopposite charge and no

requirement is made on the scalar spfof the two tracks.

Level-1

The requirements at L1 are

e Two tracks

e 4 XFT hit layers for each track

o XFT pr > 2.04 GeV/c for each track

e Opening anglég < 90°

Level-2

The requirements at L2 are

Two tracks

SVTx% < 25

SVT pr > 2 GeV/c for each track

120pm < |do| < 1 mm for each track

Opening anglégy < 9¢°

Lxy > 200pm
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Level-3

The requirements at L3 are

Two COT tracks matched to SVT tracks

120pm < |do| < 1 mm for each track

pt > 2 GeV/c for each track

|AZp| < 5 cm between the tracks

Opening angle 2< Agy < 9¢°

Scalarpr sum:Zpr > 4.0 GeV/c

A.3 TheB_CHARMH GHPT Trigger Path

TheB_CHARMH GHPT trigger path was originally added as a lower rate TTT pathcivhi
did not need to be prescaled at higher luminosities. Howexemn this trigger cannot be
included at the highest luminosity running. The requiretaeme similar to thé3_CHARM
but with higherpr and scalar sunpy requirements to lower the rate.

Level-1

The requirements at L1 are
e Two tracks with opposite charge
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4 XFT hit layers for each track

XFT pr > 2.46 GeV/c for each track

Opening anglé&g < 135

Scalarpr sum:Zpr > 6.5 GeV/c

Level-2
The requirements at L2 are
e Two tracks with opposite charge

SVTx?< 25

SVT pr > 2.5 GeV/c for each track

120pm < |do| < 1 mm for each track

Opening angle 2< Agy < 9¢°

Scalarptr sum:Zpr > 6.5 GeV/c

Lxy > 200pum

Level-3

The requirements at L3 are

e Two tracks with opposite charge
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120pm < |do| < 1 mm for each track

pt > 2 GeV/c for each track

In| < 1.2 for each track

|AZp| < 5 cm between the tracks

Opening angle 2< Agp < 90°

Scalarpt sum:Zpr > 5.5 GeV/c

Lyy > 200um
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Appendix B

Analysis Quality Requirements

B.1 Default Track Selection

The def Tracks requirements are made on all tracks used in these analysekst
which pass these requirements are considered to be of g@ditygdracks which fail the

more stringent cuts are demoted to the next lower class destee.

e COT and silicon tracking (Ol12):

- COT requirements:
1. Two or more axial superlayers (SL) with 5 or more hits each
2. Two or more stereo SL with 5 or more hits each
3. If (1) and (2) are not satisified, track will still be accegif there are two
axial SL and one stereo SL with 5 or more hits, as long as tlo& eaits
the COT in thez direction before the last wire layer.
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- Silicon requirements:

1. Three or more silicong hits if COT requirements are met

2. If COT requirements are not met, track must have five or midioes r@

hits to be accepted
3. One or more axial silicon hits and one or more 8dicon hits

4. If (3) is not satisifed, track is accepted if it has threerare 90 silicon
hits

- Zp error less than 0.05 cm

e COT stand-alone tracking:

- Same COT requirements as OIZ
- One or more axial silicon hits
- Zp error less than 0.5 cm
e Outside-in tracking:
- Same COT and axial silicon requirements as OIZ
- dp error less than 0.05 cm

e Inside-out tracking:

- COT requirements:

1. Two or more axial SL with 5 or more hits each
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2. Two or more stereo SL with 5 or more hits each

3. If (1) and (2) are not satisified, track will still be accegtif it has 5 or
more axial COT hits and 2 or more stereo COT hits, as long as dlok tr

exits the COT in the direction before the last wire layer.

- Duplicate COT tracks are detected and removed
e COT only tracking:

- Same COT requirements as for OlZ

- X2 per degree of freedom is less than 10
e Silicon only tracking:

- If track passes through the forward region of the detegtonust have 5 or

more axial silicon hits

- If track passes through the central region of the deteittonist have 4 or more

axial silicon hits

- Track does not traverse the entire COT volume (otherwidsoitilsl have fallen

under the Outside-in category)

B.2 Good Run Criteria

The definition of a “good run” has been set for various physicealysis by the CDF
Il Data Quality Management group. For each data run, the goodits are set true or

281



false by the shift crew or in offline analysis, and are saveal database. Most of the good
run bits are set by a shift crew member called the ConsumerapgiCO) whose job is
to monitor the online data quality plots. Fbrphysics, the following good run bits are

required to be true:

o RUNCONTROL_STATUS: The Run Control software starts and stops the data taking run.
This bit is automatically set to true by Run Control if a run $dsing enough for 100
million collisions, 10,000 Level-1 accepts, 1,000 Levelezepts, and at least 1 b

of integrated luminosity.

e SH FTCREWSTATUS: This bit is filled by the shift crew member operating the Run

Control software at the end of every run.

e CLC.STATUS: This bit is set to true by the CO if the online data quality ploff

luminosity and beam conditions are normal.

e L1T _STATUS andL2T_STATUS are set to true by the CO after verifying that the Trigger

Monitoring plots are normal.
o L3T_STATUS s set to true if the L3 SVX Il reformatter error is less than.1%

e COT_ONLI NE bit is set to true by the CO if the COT high voltage was on for thi#en
run and the COT Monitoring plots look normalOT_OFFLI NE status is determined
after the data has been examined offline by experts. Theiarfte setting it true
is that there were fewer than 1% of bad COT channels duringuhend that the
integrated luminosity was at least 101
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e SVX_ONLI NE bit is set to true by the CO if the SVX Il high voltage was on foe th
entire run and the SVX Il Monitoring plots look normaBVX_OFFLI NE status is
determined after the data has been examined offline by expditie criteria for
setting it true is that th®° andD** yields are within the expected ranges. These
particles decay at secondary vertices and thus will fire th€ &nd are produced at

a high enough rate to give meaningful statistics for any good

e CMU_CFFLI NE bitis set to true by the CO if the CMU high voltage was on for thiren
run and the CMU Monitoring plots look normalMJ_OFFLI NE status is determined
after the data has been examined offline by experts. Theiarfte setting it true is

that the CMU occupancy looks normal.

e SVT_ONLI NE bit is set to true by the CO if the SVT Monitoring plots look n@in
SVT_OFFLI NE status is determined after the data has been examined difires-
perts. The criteria for setting it true is that the onlinergzosition subtraction was

done correctly and the SVT occupancy looks normal.

e CAL_ONLI NE bit is set to true by the CO if all the electromagnetic and haidro
calorimeter high voltages were on for the entire run and 8saated monitoring
plots all look normal.CAL_OFFLI NE status is determined after the data has been ex-
amined offline by experts. The criteria for setting it trughiat the occupancy looks

normal.
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