
Observation of Semileptonic Decays

of Baryons Containing Bottom Quarks

at the Fermilab Tevatron

Je�rey Chun�Lee Tseng

A dissertation submitted to the Johns Hopkins University

in conformity with the requirements for

the degree of Doctor of Philosophy�

Baltimore� Maryland

����

c� Copyright ���� by Je�rey Chun�Lee Tseng

All rights reserved�



Abstract

The semileptonic decay of the �b baryon is observed at CDF in ����pb�� of data

from Run �A through its decay �b � ��c e��eX� by the identi	cation of a high�
energy electron and the full reconstruction of ��c � pK��� with the correct charge

relationship and combined invariant mass� From �
������ signal events� the cross
section times branching fraction is measured to be

�bpbT � ���
 GeV�c� jyj � ���
fb� �b�Br�b � ��c e��eX�Br��c � pK����

� ��� � ����stat�� ����syst�����������theory�� nb�

Using the previously measured CDF b quark cross section at ���
 GeV�c� ���� �
���� � �����b and removing common systematic uncertainties�

fb� �b�Br�b � ��c e��eX�Br��c � pK����

� ���� � ���stat�� ���syst���������theory��� �����

This is the 	rst �b semileptonic rate measurement at a hadron collider� This

research was conducted under the guidance of Professor Bruce Barnett�
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Chapter �

Overview

The last half century has seen an astonishing variety of phenomena described� clas�

si	ed� and incorporated into a single theoretical structure known as the �Standard

Model�� This theory of matter describes the behavior of elementary particles un�

der the in�uence of electromagnetic� weak� and strong forces� and� by extension�

the behavior of the forces themselves� We describe in this chapter this theory and

how it is used in experimental particle physics measurements�

��� The Standard Model

The most obvious elementary particle in the Standard Model is the electron� perva�

sive in its chemical and electrical e�ects� The electron belongs to a family of spin���

particles known as the �leptons� which are subject to electromagnetic and weak

forces� There are six leptons whose properties are summarized in Table ���� ���

They are paired into three generations��
B� �e

e

�
CA �

�
B� ��

�

�
CA �

�
B� ��



�
CA �

�
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lepton charge mass  MeV�c��

�e � � �������
� �
� C�L��

e �� ��
��

�� � � ���� ��� C�L��

� �� ��
���

�� � � �� �
� C�L��

 �� ������

Table ���� Lepton properties�

which re�ect the observed fact that lepton number is conserved within each gen�

eration� that is� the number of electrons and electron neutrinos is the same before

and after a reaction� The same holds for ��s and ���s� and  �s and �� �s�

The three�generation structure is mirrored in the other family of spin��� particles

known as the �quarks�� �
B� u

d

�
CA �
�
B� c

s

�
CA �
�
B� t

b

�
CA �

whose properties are summarized in Table ���� Unlike the leptons� quarks are

subject to the strong force as well as the electromagnetic and weak forces� This

di�erence is important� since the properties of the strong force are such that the

quarks are con	ned in bound states with other quarks they are never observed

in isolation� Like the leptons� only the 	rst generation of particles in this family

are familiar in the everyday world�

Unlike lepton family number� however� interactions do not conserve quark fam�

ily number� This is due to the fact that the mass eigenstates are not the same as

the weak eigenstates� resulting in a mixing of quark �avors� By convention� the
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quark charge mass  MeV�c�� Iz S C B T

d ��
�


 to �
 ��
�
� � � �

u !�
�

� to � !�
�
� � � �

s ��
�

��� to ��� � �� � � �

c !�
� ���� to ���� � � !� � �

b ��
�

���� to �
�� � � � �� �

t !�
� ��
��� � ����� � � � � !�

Table ���� Quark properties� The masses of the u� d� and s quarks are �current�

quark� estimates� while the c and b masses are from mesons� The top quark mass

is from tt events at CDF�

lower quarks� d� s� and b� are taken to mix according to a matrix�
BBBBB�
d�

s�

b�

�
CCCCCA �

�
BBBBB�
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

�
CCCCCA

�
BBBBB�
d

s

b

�
CCCCCA � ����

where the q� and q are the weak and mass eigenstates� respectively� This matrix

is known as the Cabibbo�Kobayashi�Maskawa �CKM�� matrix� and is unitary

if we assume that there are only three quark generations� Unitarity constrains

the free parameters in the matrix to three real angles and one complex phase�

Measuring these parameters is one of the most important goals of particle physics

today� since they are not 	xed within the Standard Model itself� they could re�ect

physics beyond it�

Quarks and leptons interact with one another through gauge bosons� so called

because they arise from imposing �local gauge invariance�� which means that the

equations of motion must be same when the quantum 	elds are multiplied by a
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unitary phase factor Ux�� a function of spacetime position� When Ux� � U���

having the form ei�
x�� where �x� is a scalar function� the gauge boson corresponds

to the photon� which mediates the electromagnetic force� When Ux� � SU�� �
U��� the result is the uni	ed electroweak force with its photon� W�� and Z�

gauge bosons� Another massive 	eld� the Higgs boson� is postulated to break the

symmetry of the theory and to thus explain the fact that the W and Z have large

masses while the photon remains massless�

The description of the strong force� Quantum Chromodynamics QCD�� is also

a gauge theory where Ux� � SU��� In this theory� quarks have a �color� charge

of red� green� or blue� and their interactions are mediated by eight gauge bosons

called �gluons�� The strong force binds quarks together� Its consequences will be

discussed in the next section�

Gravity is also recognized as a fundamental force and is described by a gauge

theory� but its relationship with the other three forces remains unclear and is

not incorporated in the Standard Model� Since its coupling is so comparatively

feeble roughly ����� of that of the electromangetic interaction we ignore it in

the analysis of our experimental data�

��� Quarks and Hadrons

One of the most intriguing and challenging features of the strong force is that the

gluon density between two quarks increases with distance� in stark contrast with

the other forces� for which the mediating boson density tends to decrease with dis�

tance� The increasing gluon density results in �color con	nement�� bound states

must always be colorless� and quarks in such a bound state sit in an essentially

in	nite potential well� Indeed� to pull two quarks apart is to increase the energy
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force gauge mass source

boson  GeV�c��

electromagnetism � � charge

weak W� ����� � ���� weak

Z� ������ � ����� hypercharge

strong g � color

Table ���� The Standard Model gauge bosons�

density to such an extent that two new quarks are created� Experiments therefore

deal with these bound states� or �hadrons�� Because of the three color charges�

hadrons come in two varieties� mesons� which combine a quark and an antiquark�

which has an anticolor charge� and baryons� which combine three quarks or three

antiquarks� the three colors combining into a neutral� or �colorless�� combination�

The behavior of these hadrons must be derived from our quark�level understand�

ing of matter� This derivation is no trivial matter� This section describes the

production and decay of the �b baryon in pp collisions in the context of the quark

model�

����� �b Production

Brie�y� b and b quarks are produced in interactions between partons in the initial

proton and antiproton� as shown in Figure ���� and are combined with other quarks

to form hadrons� This latter process is called �fragmentation�� The production

and fragmentation processes are generally assumed to be independent and may be

treated separately�
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Figure ���� Schematic of the process pp� bX�

Since the partons in the proton and antiproton include not only the three

valence quarks or antiquarks but also the sea of qq pairs and gluons� single b quark

production proceeds by all the following processes�

q ! q � bX

g ! q � bX

g ! q � bX

g ! g � bX

The inclusive single�quark cross section� �b� for these processes has been calculated

using the lowest order graphs shown in Figure ��� as well as higher graphs to order

��s� taking advantage of the fact that �s is small for processes characterized by

large momentum transfers� The calculation leaves two free parameters� a renor�

malization mass scale� �� which we take to be �� �
q
m�

b ! p�T � and the b quark



���� QUARKS AND HADRONS �

mass� mb� which we take to be ���
 GeV�c�� Thismb is not the same as that shown

in Table ���� because this quantity depends upon the renormalization scheme� In

practice� the pT distribution of the b quark is not observed because of fragmenta�

tion� Moreover� in this analysis the hadron itself is only partially reconstructed�

Therefore the cross section is quoted integrated above a certain pmin
T � below which

the b events do not enter the analysis in appreciable quantities� and in a range of

rapidity�

Figure ���� Lowest order graphs for the single b quark inclusive cross section cal�

culation�

The cross section prediction also depends upon the proton structure functions

which parameterize the composition of quarks and gluons that make up the proton�

Several sets of structure functions have been calculated by A�D� Martin� W�J�

Stirling� and R�G� Roberts� by analyzing a wide assortment of processes� including

deep inelastic scattering as well as Drell�Yan andW production� �
� These structure
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functions are often labeled �MRSD��� with the �MRSD�� functions as an upper

limit�

Fragmentation is another process which is di�cult to calculate using full QCD�

Qualitatively� a leading quark stretches the gluon 	eld generated by its color charge�

The energy density increases as a result until it is large enough to create real quark�

antiquark pairs� This process is shown schematically in Figure ���� Some of these

quarks form color�neutral hadrons and disengage from the gluon 	eld� while other

quarks continue pulling on it until all the initial energy is expended� We assume

for simplicity that at high enough pT the fragmentation of the single leading quark

is independent of its production�

Figure ���� Schematic of the fragmentation process� where the b quark pulls a qq

pair out of the color 	eld� forming the hadron h with the q�

Fragmentation is described in terms of functions Dh
q z�� which are the prob�

abilities of generating the hadron h in the fragmentation of the quark q with

energy�momentum fraction z� A common de	nition of z is

z � E ! pk�h
E ! p�q

����

where pk is the hadron momentum parallel to the initial quark direction� This

de	nition has the advantage of being invariant with respect to boosts along the
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quark direction� The relation

X
h

Z �

�
zDh

q z�dz � � ����

follows from momentum conservation�

Peterson et al� have taken advantage of the charm and bottom quarks� large

masses to propose a simple parameterization of their fragmentation functions� ���

A fast�moving heavy quark does not lose much of its energy when it is paired

with a newly created light quark� Quantum mechanical arguments show that the

transition amplitude is inversely proportional to the energy transfer� �E�

AQ� H ! q� � �E��� ����

�E � EH ! Eq � EQ� ��
�

where EH� Eq� and EQ are the energies of the new hadron� the newly created quark�

and the initial heavy quark� respectively� The energy transfer may be expanded

as follows� with the approximation that the mass of the hadron is close to that of

the heavy quark�

�E �
q
m�

H ! z�p� !
q
m�

q ! �� z��p� !
q
m�

Q ! p� ����

� � � �
z
� �hQ
� � z

����

where �hQ � m�
q�m

�
Q� the ratio of e�ective masses of the quarks involved in the

hadron� is an input parameter for the model and must be measured in data for

individual hadron species� The fragmentation function may then be written

Dh
Q �

N

z��� z�� � �Q�� z�����
� ����

where N is the normalization constant� and an additional z�� factor has been

introduced for the longitudinal phase space� Measurements at e�e� experiments
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give the following values� ���

�c � ������������������������ ����

�b � ������������������������������ �����

As expected� the ratio of the two �Q�s�

�c
�b
�
m�

b

m�
c

� ����������� �����

The above argument pertains most directly to meson production via fragmen�

tation� whereas baryon production requires popping a diquark�antidiquark out of

the gluon 	eld� We assume for the present that the bottom quark is heavy enough

that the e�ective mass of the diquark is similar to that of the antiquark in the

meson case� and therefore that ��bb is close to the inclusive �b measured above�

����� Semileptonic Decay

The experimental study of the electroweak quark physics would ideally measure

quantities related to the vertex illustrated in Figure ���� where two quarks of

di�erent �avors couple to a W boson� One measurable quantity of special interest

is the CKM matrix element which determines the vertex coupling strength� In the

case of a b � c transition� however� there is not enough mass to make a real W �

and hence another vertex must terminate the W line� as shown in Figure ��
� This

vertex may couple the W to other quarks or to a lepton�antilepton pair� Taking

the diagram to represent b decay� we have in Figure ��
 diagrams for the transitions

b� cqq and b� c����

In addition� since the observed particles are actually hadrons� the quarks must

be �dressed� with other quarks� As shown in Figure ���� if the second vertex

couples the W to two other quarks� the decay proceeds via internal W emission�
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Figure ���� The bcW vertex�

Figure ��
� b quark decay� to a three�quark 	nal state left�� or semileptonic 	nal

state right��
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where the W decay quarks join with initial quarks� and external W emission�

where the W decay quarks hadronize independently� These are only the simplest

diagrams� Figure ��� shows graphs with additional gluon lines which must be

included in any calculation of experimental observables� Such calculations rapidly

become very complicated�

Figure ���� Lowest�order hadronic decays proceeding via internal left� and exter�

nal right� W emission�

Figure ���� A sample of hadronic decay diagrams with additional gluon lines�

If� on the other hand� the virtual W decays to a lepton pair� for instance an

electron and an electron antineutrino� as shown in Figure ���� the picture simpli	es

considerably� due to the leptons� insensitivity to the strong force� The gluon inter�

actions are thereby reduced� and externalW emission is the only option� Moreover�
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electroweak lepton physics is well understood on the elementary particle level� For

these reasons� semileptonic decays are important tools in understanding quark�level

physics�

Figure ���� Semileptonic �b decay�

Semileptonic decay o�ers an experimental advantage in that the daughter

lepton in this case� an electron is readily identi	able� This fact is especially im�

portant at a hadron collider� where the b production cross section is much smaller

than the pp interaction cross section� Since there are no high�energy electron pro�

duction mechanisms from light�quark interactions� a sample of high�energy elec�

trons is expected to be rich in heavy quark events� and of these events the sample

will contain mostly b decays� because b quarks typically produce higher�energy

electrons than charm�

An additional advantage accrues to the study of bottom physics due to the bot�

tom quark�s large mass� Again� the momentum of the heavy quark is not changed
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signi	cantly by the low�energy here below the QCD scale� �QCD � ��� MeV 
interactions within the hadron� the result being that the bottom quark largely

decouples from the light diquark� The heavy quark is essentially at rest in the

hadron rest frame and acts as a static gluon source� Hadron properties then be�

come independent of the heavy quark�s mass and spin� Similar symmetries arise

in atomic physics due to the large nuclear mass� di�erent isotopes have the same

chemistry� since the electron cloud sees only the charge of the nucleus� and the

hyper	ne energy splittings are very small because of the small couplings between

the electron and nuclear spins� These observations for quarks in hadrons have

recently been formalized into what is known as Heavy Quark E�ective Theory� ���

Corrections to the above symmetries are on the order of �QCD�mQ�

The heavy quark mass limit has been mostly explored for mesons with one

heavy quark� since mesons are the most frequent fragmentation products� and

large samples have been already been collected by experimenters� Among bottom

baryons� the �b is expected to be the most frequently produced as well as being

a daughter particle in "b decays with its ud diquark� The diquark is also spin���

so that the baryon spin re�ects the bottom quark spin�

The top quark� at ��� GeV�c�� is of course muchmore massive than the bottom

quark� However� its production rate is too small with present technology to admit

large�statistics studies� In any case� since the top quark decays primarily through a

bottom quark and a realW � an understanding of bottom quark physics is essential

to studying top� The bottom quark is the heaviest and most copiously produced

quark for the study of quark�level dynamics�
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Spectator Model

A calculation of production rate and branching fractions requires the simulation

of the particle and its decay in a detector model� It is therefore dependent upon

the model of the decay itself�

Given that the bottom quark is largely independent of its light partners� the

simplest reasonable model for �b decay consists of decaying the bottom quark

independently of other processes� and hadronizing the 	nal quarks� This is called

the �spectator model�� since the light quarks do not participate in the actual

decay� Though there have been a number of recent theoretical advances in the

understanding of exclusive decays� such spectator models� in particular ones which

include QCD corrections such as ACCMM ����� remain a benchmark� and we

use it to compare with more sophisticated models� ACCMM has been useful in

	tting inclusive single lepton spectra� and describes the data well where the b� c

transition is important�

Our interest in the spectator model is primarily as an input into the decay

simulation� We use the ACCMM ansatz� that the momentum of the bottom quark

in the hadron rest frame is distributed according a normal distribution�

�p� �
�p
�p�F

e�p
��p�

F �����

where pF is the �Fermi momentum�� A 	t to inclusive lepton data at #�S� yields

pF 	 ��� MeV�c� ���� The statement that the bottom quark in the �b would be
less relativistic than in mesons would imply that pF for the �b would be smaller�

However� for the purposes of this analysis� we assume that it is the same�
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Exclusive Model

Two factors lead to the expectation that the exclusive decay �b � ��c e��e� with
its charge conjugate� dominate the �b semileptonic decays to �c observed at CDF�

First� the decays with additional hadrons reduce the energy available to the elec�

tron� Second� of the available three�body decays� �b � "�c e��e is suppressed by
isospin symmetry� and �b � ���c e��e requires the change of the relative angular

momentum of the two light quarks with respect to one another� while the gluon in�

teraction necessary for such a change is exactly that suppressed in the heavy quark

limit� It should be noted that in the �b the bottom quark partner is a spin�� ud

system� whereas in the meson case the b is paired with a single spin��
�
light quark�

Adding the two spins gives mesons with both spins � and �� while for baryons�

the sum is only spin��
�
� Thus� when relating decay widths between baryons and

mesons� a �b � �c transition corresponds to the sum of B � D and B � D�� The

B � D�� transitions� which change the relative angular momentum between the

heavy quark and its partner� corresponds to a �b � ��c transition in the baryon
case� The B � D�� transition makes up at most about ��� of the semileptonic

decay width of the B meson� the rest being taken up by higher resonances and

nonresonant decays�

To model �b � ��c e��e� we have used decay distributions derived by R� Sin�
gleton� ����� He begins by writing the decay rate

d$Ms � ms�e�� �
�

�N
jAMs � ms�e��j�d% �����

where the Ms and ms� are the �b and �c� respectively� with masses M and m and

spin components s and s�� The phase space factor is the familiar Lorentz invariant
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phase space factor�

d% � �����
��P � k � p � p��
Y
f

d��kf
�����Ef

�����

where the ��momenta of the �b and �c are P and k� and that of the e and � are

p and p�� The product is over the three 	nal state particles� �kf representing their

three�momenta� The invariant amplitude is factored into leptonic and hadronic

currents�

AMs � ms�e�� �
GFp
�
VbcL

�Hs�s
� � ���
�

where GF is the weak coupling constant and Vbc is the CKM matrix element� The

leptonic current has the well known form�

L� � ue�
��� ���v�� �����

while the hadronic current is constructed from Lorentz�invariant form factors�

H
s�s�� � � k� s�jJ���jP� s � �����

J� � V � �A� �����

� kjV ���jP � � um�g�
� ! g�P ! k�� ! g�P � k���uM �����

� kjA���jP � � um�a�
��� ! a�P ! k���� !

a�P � k�����uM �����

where the spin labels have been suppressed in the last two equations� The form

factors g� g�� a� and a� are functions of the scalar q� � P � k��� which is the

squared mass of the virtual W �

Using standard four�component Dirac spinors with normalization uu � � and

averaging over the initial and 	nal spins� the di�erential decay distribution becomes

d$

dyd cos 	
�

G�
F jVbcj�KM�y

�����

�
�
�
� � cos 	
�

��
jH�j�!
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�
� ! cos 	

�

��
jH�j� ! sin� 	jH�j�

�
� �����

where y � q��M� and 	 is the angle the electron makes with the W direction�

boosted into the W rest frame� K is the �c momentum in the �b rest frame�

K � M

�

	
� � m�

M�
� y�� � �m

�

M�
y


���
� �����

The H��� amplitudes are the result of projecting the currents along longitudinal

and transverse W helicity basis vectors�

H� � �aF� 
 gF�� �����

H� � f��aN � �
�
F��� �ka�F���

!�kg�F� ! gF��
�g��� �����

where k is the �c momentum in the W rest frame�

k �
Kp
y
� ���
�

and the F and N coe�cients are

N �
	
Em !m�EM !M�

�Mm


���
�����

F� � N

	
k

Em !m
� k

EM !M



�����

F� � N

	
� � k�

Em !m�EM !M�



�����

where the energies are calculated in the W rest frame�

EM �
M

�
p
y

	
�� m�

M�
! y



� �����

Em �
M

�
p
y

	
�� m�

M�
� y



� �����
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Meson form factors have been calculated by N� Isgur� et al�ISGW� ����� using

a nonrelativistic quark potential model� Bound state e�ects are modeled by the

valence quarks moving in a Coulomb�like potential� Using a similar technique�

D� Scora has calculated form factors for heavy quark baryon decay� including those

for �b � ��c e��e� ���� He begins with di�erent form factor de	nitions�

� k� s�jV�jP� s � � u

	
F��� ! F�

P�
M
! F�

k�
m



u �����

� k� s�jA�jP� s � � u

	
G��� !G�

P�
M
!G�

k�
m



��u �����

these form factors being connected with Singleton�s by the formulas�

g �
p
�MmF� �����

g� �
p
�Mm

�
F�
�M

� F�
�m

�
�����

a �
p
�MmG� ���
�

a� �
p
�Mm

�
G�

�M
� G�

�m

�
� �����

The Hamiltonian is

H �
�X
i�

�
mi !

p�i
�mi

�
!
X
i	j

�
�

�
brij ! c� ��s

�rij

�
� �����

with �rij � �ri��rj� The model parameters are taken to be �s � ��
� b � ���� GeV
��

and c � �����
 GeV� and the constituent quark masses mu � md � ���� GeV�c��

mc � ���� GeV�c�� and mb � 
��� GeV�c�� He calculates the wavefunction by

varying the parameters of the lowest two�dimensional harmonic oscillator state

function to obtain the ground state� The form factors all have the form� letting F

stand for vector or axial factors�

Fi � F iIH �����



���� QUARKS AND HADRONS ��

where IH is

IH �

�
�
�
�

��

�

�����
�����

�����

����
exp

	
��
�

�
m�

�

Mm

�
q�max � q�

�����



� �����

In this expression� m� is the constituent quark mass� which is simply mu � md in

our case� and q�max � M �m��� The ��s are the variational parameters� with the

additional de	nitions

����� �
�

�
��� ! ����� �����

��

� �
�

�
��
 ! ��
��� �����

The form factor coe�cients are as follows�

F � � � !
m�

mc
���� ! m�

mb
� ! �� �����

F � � �m�

mc
� ��� �����

F � � �m�

mb
� ! �� �����

G� � CgA ���
�

G� � �m�

mc
� ���� m�

�

mcmb
� ! ������ �����

G� � �m�

mb

� ! ��� m�
�

mcmb

� ! ������ �����

where CgA � ����� is a relativistic correction to the axial form factors� and with

the de	nition

� �
��� � ����

��� ! ����
� �����

which is a measure of the wavefunction mismatch between the parent and daughter

baryons� The variational parameters are calculated to be �
 � ���� GeV and

�� � ��
� for the �b� and �
� � ���� GeV and ��� � ��
� for the �c� Inserting all

these elements into Equation ����� we arrive at a decay distribution in terms of the
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four�momentum transfer y and the electron angle 	� Figure ��� shows the shape

of this distribution with arbitrary normalization� The assymetry in cos 	 re�ects

the V �A structure of the quark�level decay� We use this distribution to simulate

�b � ��c e��e�

Figure ���� Singleton�Scora decay distribution for �b � ��c e��e as a function of y
and cos 	�
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Comparison to Data

ISGW is not a model with adjustable parameters to 	t data� as is ACCMM�

To compare ISGW with data requires the model calculation to be repeated for

every contributing exclusive channel and summed� and every calculation results

in a de	nite prediction� However� not all decay channels have yet been modeled�

including those to baryons� CLEO has compared ACCMM and ISGW with the

inclusive lepton energy spectrum at #�S�� ��
� With two adjustable parameters�

ACCMM 	ts the inclusive lepton spectrum well except for the high�energy tail�

which is very sensitive to b � u transitions� ISGW� on the other hand� must

be modi	ed to admit a larger D�� contribution to the semileptonic width� This

adjusted model is dubbed �ISGW&&�� and also 	ts the data well except for the

high�energy tail� However� since both 	t well the bulk of the spectrum� which is

mostly dependent upon b � c transitions� we have some con	dence that related

calculations are appropriate to model �b decay�

��� Rate Expectation

In this analysis� we identify electrons and fully reconstruct �c�s to obtain evidence

for �b production and semileptonic decay� The rate measurement will take the

form of the product

f�bBr�b � ��c e��eX�Br��c � pK���� �����

which will be averaged over the decays listed and their charge conjugates� f�b

is the probability of the fragmentation of the b quark resulting in a �b� whether

directly from hadronization or from the decay of more massive baryons such as

"b� It is generally assumed that ��� of the b quarks hadronize into baryons� If



���� RATE EXPECTATION ��

we assume that all "b�s decay to �b�s� as all "c�s do to �c�s� and we neglect 'b

production� we can take this number as f�b�

The decoupling of the heavy quark with its partner light quarks implies that

the semileptonic widths of all b hadrons are equal� Since the branching fractions

are proportional to their total widths� which vary inversely with their lifetimes� we

take

Br�b � ��c e��eX� �
�b
B
BrB � e�X� ��
��

where we have neglected b� u transitions and other �b semileptonic decays which

do not produce �c�s� We can therefore take advantage of the inclusive measure�

ment� ����

BrB � e�X� � ����� � ���� � ������� ��
��

using dilepton events at #�S�� The lifetime ratio� �b�B� is generally expected to

be about ���� ���� but measurements have placed it lower� For our present estimate�

we use the theoretical expectation� Combining all these numbers with the world

average value for Br��c � pK���� of ��� � ����� ���� we get

f�bBr�b � ��c e��eX�Br��c � pK���� � ���� ����� ��
��

It should be noted that the �c branching fraction is not well known� Most recent

measurements� performed at e�e� machines at #�S�� neglect baryonic B decay

modes besides those with the 	nal state ��c NX� If such decay modes contribute

signi	cantly to B decay� Br��c � pK���� would increase� ���� CLEO ���� has

performed another measurement� relating ��c � pK��� to ��c � ������ As�

suming that all c hadrons have the same semileptonic width� as we have assumed

above for b hadrons� they calculate an upper limit on Br��c � pK���� to be

���� � ���
 � ���
��� A further assumption using the spectator model gives the
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branching fraction

Br��c � pK���� � 
��� � ����� ������� ��
��

The world average quoted by the Particle Data Group simply averages these meth�

ods� but the nature of the measurements indicates that the branching fraction may

indeed be higher� which would then increase the product of branching fractions we

measure here�
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Experimental Apparatus

Experimental high�energy physics is� on the one hand� done very deliberately�

marshalling sizable resources in order to build the equipment needed to concentrate

large amounts of energy as well as extract precise measurements of small signals

from complicated environments� and on the other hand� prone to reap additional

and sometimes unexpected rewards� There is considerable interesting physics in

that complicated environment� For this reason� each piece of equipment is actually

a general�purpose device which can be used for many di�erent analyses�

The process we are studying is as follows�

�� pp � bbX at
p
s � ��� TeV� a proton and an antiproton are accelerated to

��� GeV each and steered into a head�on collision� producing� among other

things� a bb pair�

�� The b quark fragments into a �b� For this analysis we take both charge�

conjugate processes�

�� �b � ��c e��eX� the �b decays semileptonically to a ��c and an electron�

�
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�� ��c � pK���� the ��c decays into three hadrons� This three�body decay

includes decays via resonances such as K��� ��
���� and ����

The 	rst step is accomplished using the Fermilab Tevatron as a collider� which� as

noted above� produces many di�erent particles by many di�erent processes� The

following steps occur naturally on short time scales� and are not seen directly�

Instead� they are inferred by the long�lived debris they produce� In this case� the

debris consists of four particles� an electron� a proton� a kaon� and a pion� which

must be sorted out from all the other activity in the event� We accomplish this

with the Collider Detector at Fermilab CDF�� ����

��� The Fermilab Tevatron

The process of achieving high�energy pp collisions is outlined in Figure ���� with

the topology illustrated in Figure ���� It begins with electrical discharges in a

hydrogen gas bottle� producing H� ions� These are accelerated down a �
� m

linear accelerator to an energy of ��� MeV� The two electrons are stripped o��

and the protons are injected into the Booster ring� which is a circular accelerator

with a circumference of ��
 m� The Booster increases the energy to � GeV and

then transfers the protons to the Main Ring� a larger circular accelerator� with a

circumference of ��� km� The Main Ring again adds energy to the protons� this

time increasing the energies to �
� GeV�

At this point� some protons are extracted from the Main Ring and smashed

into a target� Among the collision products are antiprotons� which are guided into

a storage ring for later use in pp collisions� When required� the antiprotons are

reinjected into the Main Ring� and from there into the Tevatron�

The Tevatron is another circular accelerator built in the same tunnel as the
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hydrogen gas bottle

linac

Booster

Main Ring Antiproton Source

Tevatron

�

�

�

�

�

�

Figure ���� Elements in the generation and acceleration of protons and antiprotons

at Fermilab�
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Figure ���� Schematic diagram of the Fermilab accelerators�
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Main Ring� However� with the higher magnetic 	elds made possible with its su�

perconducting magnets� the Tevatron increases the particle energies to ��� GeV�

It is also� with the addition of electromagnetic separators� able to simultaneously

accelerate counter�rotating proton and antiproton beams� Finally� the two beams

are tightly focused to a radius of about �
 �m and guided to intersect at the B�

interaction region of the Tevatron� CDF is constructed around the nominal B�

interaction point� Along the beamline� the collisions occur within �� cm of the

nominal interaction point because of the length of the p and p bunches and the

small intersection angle of the two beams� Furthermore� with the high beam in�

tensities characteristic of the ��������� data run� many beam crossings produced

more than one collision�

��� The Collider Detector at Fermilab

CDF is a general purpose particle detector constructed and maintained by a multi�

national collaboration of high�energy physicists� with member institutions from

the United States� Italy� Japan� Canada� and the Republic of China Taiwan��

As shown in Figure ���� it is nearly cylindrically symmetric with respect to the

beamline� and forward�backward symmetric with respect to the nominal interac�

tion point� It is equipped with high�resolution tracking chambers in a ��� T axial

magnetic 	eld provided by a superconducting solenoid� nearly �� electromagnetic

and hadron calorimeter coverage� and muon chambers� The quarter view schematic

is shown in Figure ���� This analysis is limited to the central region� which roughly

spans the pseudorapidity range j�j � ��� relative to the nominal interaction point�
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where the pseudorapidity is de	ned to be

� � � ln tan
�
	

�

�
� ����

This region is where the tracking and calorimetry is best understood and most

reliably calibrated� The following sections describe the parts of the detector used

in this analysis�

Figure ���� Isometric cut�away view of CDF� showing central� forward� and back�

ward regions�

����� Beam�Beam Counters

Essential to any rate measurement is its normalization to some other� known rate�

For CDF this normalization is provided by the beam�beam counters BBC�� which

are scintillator paddles arranged around the beampipe in the forward and backward
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Figure ���� Quarter view of CDF� with global coordinate system� The central

region used by this analysis includes the central tracking chambers and central

calorimeters�
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regions and covering a pseudorapidity range of roughly � to �� The BBC provides

a fast �minimum bias� trigger� and is a prerequisite for any other CDF trigger�

����� Tracking

Many bottom hadrons� including the �b� are� by the standards of subatomic par�

ticles� long�lived about ����� seconds� which is long enough for them to travel

several hundred microns at their nearly light speed� Bottom events are therefore

characterized by the existence of displaced vertices resulting from bottom decay�

However� detectors cannot be placed within hundreds of microns from the inter�

action point because of the extreme radiation exposure� the tracks from these

displaced vertices must be extrapolated from measurements made farther away�

Successfully reconstructing bottom events requires precision tracking� which is an

important feature of CDF�

In general� tracking a charged particle is accomplished by collecting the trail

of ionization it leaves behind� The positions at which the charge is collected yields

measurements along the particle�s path� and these measurements are combined

into a track� Because a �hit� is the result of ionization from a passing charged

particle� neutral particles leave no tracks�

CDF tracking consists of three chambers� From the outermost to the innermost�

they are the Central Tracking Chamber CTC�� the vertex time projection chamber

VTX�� and the silicon vertex detector SVX�� The CTC is a open�cell gas�	lled

drift chamber� charged particles ionize gas molecules� and the resulting electrons

and ions then drift along paths determined by the electric and magnetic 	elds

and are picked up by wires strung along the chamber� The �� radial wire layers

are organized into 	ve twelve�wire �axial� and four six�wire �stereo� superlayers�

The axial layers are strung parallel to the beamline� giving r� measurements along
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the track� whereas the stereo layers are turned ��� The two types of superlayers�

used together� yield z information as well� The superlayers are further organized

into cells which are rotated �
� relative to the radial direction to resolve left�

right ambiguities when reconstructing tracks� The transverse position resolution

of the CTC is ��� �m� and the longitudinal resolution about � mm� Inside the

��� T magnetic 	eld� the CTC�s momentum resolution is better than �pT�p�T �

�����GeV�c���� ����

The VTX is another gas�	lled drift chamber� except that the �� wire layers

are strung transverse to the beam� and provide rz position measurements� The

VTX is primarily used to measure the z position of the pp collisions� and helps

distinguish between tracks from di�erent collisions in a single beam crossing�

The SVX� shown in Figure ��
� consists of four layers of silicon microstrip de�

tectors� The innermost layer is about � cm away from the beam� and the outermost

� cm� On each detector face there are hundreds of metal strips� each separated

by 

 or �� �m� The bulk silicon is n�doped� but under each strip is a p�doped

region� resulting in a high�density array of pn diodes� Passing charged particles

excite electrons into conduction energy bands� The resulting charges and �holes�

are swept out of the diode region by the electric 	elds and picked up by the metal

strips� With its small radius and high strip density� the SVX is a high�resolution

r� tracker� its transverse impact parameter resolution is about �� �m� This high

resolution is necessary to identify non�primary decay vertices in an event�

The amount of ionization left by a charged particle is related to its energy

loss� Since the energy loss is also related to the particle mass� given knowledge

of the particle�s momentum� measuring the amount of ionization is a handle on

its identity� The CTC is instrumented to measure the ionization along the tracks�

These measurements have been calibrated using electrons� since they are readily
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Figure ��
� One SVX barrel� cut�away isometric view�
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Figure ���� One SVX detector ladder� showing the three individual detector crys�

tals� and readout chips�
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identi	ed and highly relativistic� due to their small mass� Because of this last

characteristic� their dE�dx response is constant� After the corrections� the p��

separation in the relativistic rise region above about ��� GeV�c is roughly ��� and

is used to distinguish proton candidates in this analysis�

����� Calorimetry

Outside the CDF tracking chambers lies the solenoid� and outside of that are the

calorimeters� which absorb particles and provide measurements of the resulting

energy deposition� The calorimeters also distinguish between di�erent particle

species by their energy loss characteristics� Most hadrons will lose their energy by

nuclear interactions in the steel absorber of the hadron calorimeter� High�energy

muons� on the other hand� tend to deposit little energy in absorbers and are instead

detected outside the calorimeters� Photons tend to lose their energy quickly via

pair production� and electrons via bremsstrahlung�

The characteristic length of electron energy loss due to electromagnetic inter�

actions is roughly

X� �
����� g cm��A

ZZ ! �� ln����
p
Z�

� ����

What is important is that the energy loss is larger per unit length for higher�Z

absorbers� in contrast with the hadronic energy loss for which the characteristic

length is very roughly

�I 	 �
 g cm��A��� ����

due to nuclear interactions� In this case� energy loss is less for higher A � Z� This

di�erence makes it advantageous to construct two kinds of calorimeter� an inner

one made of high�Z absorber to detect electrons and photons� and a larger� outer

one made of relatively inexpensive absorber to detect other particles� The CDF



���� THE COLLIDER DETECTOR AT FERMILAB ��

inner calorimeter� the Central Electromagnetic Calorimeter CEM�� is constructed

of lead absorber plates interspersed with plastic scintillator� while the outer one�

the Central Hadron Calorimeter CHA�� is constructed of steel absorber and plastic

scintillator� The plastic scintillator planes collect light from the showering particles

and guide it to phototubes which convert the energy into electrical signals� The

calorimeters are constructed in �� � �
� wedges and arranged around the tracking

chambers� One wedge is illustrated in Figure ����

As a result of this construction� electrons and photons deposit most of their

energy in the CEM� while hadrons do so in the CHA� The construction there�

fore provides a very quick signature for a high�energy electron or photon in an

event� since it relies only on individual phototube measurements and requires only

pedestal subtraction and threshold comparison� Electrons and photons are fur�

ther distinguished by looking for a track pointing to the deposited energy� This

distinction requires online track reconstruction with specialized trigger electronics

described in Section ����
�

The ratio of hadronic to electromagnetic energy deposition in the two calorime�

ters is used to distinguish between electrons and hadrons� However� some of the

energy from the electromagnetic shower may leak into the hadronic calorimeter�

Conversely� hadrons may interact with and shower in the CEM� Another signi	�

cant di�erence between electrons and hadrons is the transverse size of their show�

ers� electron showers tend to be small� a few centimeters across� whereas hadronic

showers tend to be large� on the order of tens of centimeters across� The calorime�

ter geometry allows some checking of this transverse energy distribution� There

is also a layer of wire proportional chambers CES� near shower maximum in the

CEM� The anode wires run along the z direction� measuring the shower pro	le in

the r� plane� whereas the cathode strips measure in the z view� The layout is
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Figure ���� �
� calorimeter wedge� This drawing also shows the projective tower

segmentation�
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shown in Figure ���� The typical channel width is ��
 cm� allowing good shower

size� shape� and position measurement�

Cathode

Strips

z

x
Anode Wires

(ganged in pairs)

Figure ���� CES chamber� showing anode wires and cathode strips�

The calorimeters are further segmented in �� � ���� projective towers� also

shown in Figure ���� The towers point back to the nominal interaction point�

This geometry minimizes the number of towers over which a shower develops�

Furthermore� to keep the amount of material traversed by an electron shower

constant over �� acrylic plates have replaced lead absorber in higher�� towers�

����� Muon Chambers

As noted the previous section� muons deposit little energy in the calorimeters�

which completely absorb most other particles� An array of ionization chambers

has been placed outside the calorimeters to detect muons� In addition� since these

muons will have been de�ected by the central magnetic 	eld� their �ight angle

through the chambers provides a quick measurement of the muon pT � As described

in Section ���� this analysis uses the fact that some events passing the muon triggers

also contain an electron which may or may not have passed the electron triggers�
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This fact enables us to calculate the e�ciency of the electron triggers�

����� Trigger

The total pp cross section is about �
 mb� which is orders of magnitude larger

than the cross section of a process in which a typical non�minimum bias physics

investigation is interested� This fact drives interaction rates and beam intensities

higher� in order to generate more rare events� However� it is impossible to save all

the data for all the resulting events� it is also useless to save it all if only ����� at

most will be analyzed� Furthermore� it takes time to read and store ������� chan�

nels of data� time during which the detector cannot register data on subsequent�

possibly more interesting� events� Therefore it is advantageous to implement event

selection during data taking utilizing characteristics of these interesting processes�

characteristics which occur infrequently for the typical beam interaction� High�

energy leptons� for instance� are rare occurrences� and are characteristic of bottom

semileptonic decay�

This on�line event selection process is accomplished at CDF with a four�layer

trigger system� The multi�layer structure minimizes deadtime by using fast� rela�

tively simple triggers to 	lter events for slower� more sophisticated triggers� Over�

all� the trigger system must reduce a ���kHz event rate to about 
Hz of potentially

interesting events which are then recorded on magnetic tape� For this analysis� we

use triggers designed to distinguish high energy electrons� We also use triggers

which distinguish high energy muons in order to measure the electron trigger e��

ciency�
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Level 


The simplest trigger at CDF is a coincidence of hits in the BBC� indicating some

form of pp interaction� In ������� running conditions� however� the average colli�

sion rate was more than one per beam crossing� so this trigger essentially accepted

every beam crossing�

Level �

The 	rst level of triggers must make its decision every beam crossing� that is� every

��
 �s� Only the most elementary threshold comparisons are possible at this speed�

and the trigger criterion relevent for this analysis is to look for a single CEM tower

containing more than � GeV� There is also a lower threshold trigger at � GeV�

but only one out of twenty events is passed� This arti	cial rate reduction is called

a trigger �prescale�� and is valuable for rate studies�

Events containing a muon candidate have been used to examine the behavior

of the electron triggers� The Level � muon triggers look for hits in the muon

chambers� Since the muons have been passed through the central magnetic 	eld�

the angle of the hits in the transverse plane yield a pT measurement� and Level �

requires a minimum pT of � GeV�c�

Level �

The second trigger level has more time to make a decision on keeping an event�

and more sophisticated processing is therefore possible� Calorimeter towers may

be joined into �clusters� which contain most of the energy of an individual shower�

Prompt hits in the CTC may also be joined into preliminary tracks using the

Central Fast Tracker CFT��
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The primary electron trigger at this level requires a � GeV CEM cluster� where

the CHA energies in the same cluster contribute less than ���
� of the total� A

CFT track of at least ��� GeV�c must point to the cluster� Since this analysis

uses all the electrons associated with this trigger� its threshold must be measured

and parameterized� We do this using the muon triggers and the prescaled� lower�

threshold electron trigger� The prescaled electron trigger looks for � GeV CEM

clusters with the same CHA requirement� and a � GeV�c CFT track� and the

prescale varies between �� accepting all� and ���� depending on the instantaneous

luminosity�

The muon triggers at this level match muon stubs reconstructed in the central

muon chambers to CFT tracks within 
��

Level �

The Level � trigger consists of �� Silicon Graphics computers� When Level � ac�

cepts an event� the event data is packaged and shipped to one of these computers�

which then processes it in a manner similar to o�ine reconstruction� More so�

phisticated reconstruction may take place at this level� Calorimeter clusters are

reclustered� and tracks reconstructed with the full CTC hit data� In addition�

the CES data is analyzed to make sure that it is reasonably consistent with that

expected from an electron shower� and that the shower position matches an extrap�

olated CTC track� Energy sharing between adjacent calorimeters is also checked�

These cuts will be described in Chapter ��

The Level � muon triggers also take advantage of the CTC track reconstruction

and re	ne the match between the CTC track and the muon chamber hits� When

Level � accepts an event� it is written to tape for further analysis�
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Electron Identi�cation

Identifying the electron is the 	rst step of this analysis� The electron is the most

readily identi	able decay product of the �b� Moreover� high�energy electrons are

produced only in rare processes� For these reasons� as noted before� they are used

as an on�line event selection criterion� However� the trigger uses loose cuts in order

to be as inclusive as possible within the constraints of the data output rate� Tighter

cuts are applied in this analysis to further purify the trigger�selected sample� while

the eliminated data can be used for background studies� The cuts described in

this chapter fall into three categories� those that make sure the electron candidate

is well�measured� so that it does not pass cuts simply because of a bad measure�

ment� those that make sure the candidate matches our expectations for electrons�

and those that remove real electrons which originate from processes we know are

unrelated to bottom decay�

��
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��� Trigger Requirement

For the purposes of a rate measurement� we must select electron candidates from

a sample for which we can measure an absolute e�ciency� In this case we use the

sample of events which caused a � GeV trigger at Level � as well as all the quality

cuts described in this chapter� We measure its e�ciency in Section ����

��� Fiducial Cuts

The 	rst cuts are those which make sure the electron candidate falls into regions

where detector measurements are well understood� The 	rst requirement is that

the electron is in the central region of the detector� the tower number must be �

or less� This corresponds to a detector pseudorapidity range of j�j � ����� More
forward towers lack su�cient steel to entirely absorb hadronic showers within the

CHA� yielding an inaccurate hadronic energy measurement� which is important for

electron�hadron separation�

A uniform calorimeter response to electrons is necessary for a rate calculation�

Certain calorimeter towers have been removed from consideration in order to main�

tain this uniformity� First� one calorimeter tower was physically removed to make

way for electrical connections as well as the liquid helium input line to the solenoid�

any �candidates� registered in this tower must therefore be spurious� Other towers

have been removed from consideration due to known detector problems� such as

low wire chamber voltage and shorted cables� After removing these towers� the

electron rate should be uniform with respect to the � for a given tower� Two towers

were observed to give abnormally low rates relative to their neighbors� and were

therefore also removed� The result is the desired uniform calorimeter response�
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The local coordinate system for a given calorimeterwedge de	nes the z direction

along the length of the wedge� increasing with j�j� The z axis runs down the
center of the wedge� and the x direction is orthogonal to the z axis and the radial

direction� This coordinate system is of most interest in the CES� the wire anodes

give x measurements� and the strip cathodes give z measurements�

The CES is used to make sure that the candidate falls su�ciently far away

from the wedge boundary� because there are inactive regions between the wedges�

A study of CEM response shows that a margin of ��� cm is su�cient� and therefore

a cut of jxCESj � ���
 cm is applied� ����
The electron must also be well measured by the CES� for this to be true� the

zCES must fall between ��� cm and ����� cm� The joint between the two sections

of strips falls at ����� cm� and therefore the region between ����� cm and �����

cm is also excluded�

��� Matching

The detector provides several checks to make sure that the electron candidate

match expected electron behavior� These cuts divide into three categories� energy

sharing� shower shape� and track matching�

����� Energy Sharing

We consider two kinds of energy sharing in the calorimeter� between towers� and

between the CEM and CHA layers in the same tower� The CEM is constructed

such that electromagnetic energy is not shared across � boundaries�

A typical electron shower is only a few centimeters in diameter� and is well

contained within a single tower� whereas hadronic showers tend to span several�
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Towers may share the electron�s energy if the electron enters the CEM near a tower

boundary� An electron shower therefore has a distinct lateral energy pro	le� and a

variable �Lshr�� for lateral energy sharing� has been de	ned as a 
��like quantity�

Lshrn � ����
X
k

Mk � Pkq
�����Ecl ! �Pk��

����

where the sum is over the n � � adjacent towers� Mk is the measured energy in

that tower� compared with Pk� the predicted energy given the CES z measurement�

The resolution of the cluster electromagnetic energy measurement�Ecl� is ����
p
Ecl�

and �P is the change in Pk due to a � cm change in z� The Lshr variable can

be de	ned for two or three towers� The adjacent tower in the two�tower case is

its paired trigger tower � is paired with �� � with �� and so forth� The Lshr

distributions are shown in Figure ���� Lshr� is calculated by the Level � trigger�

which applies the cut Lshr� � ���� We apply the more stringent three�tower cut�

Lshr� � ���� o�ine�

A typical electron also deposits most of its energy in one or two towers of the

CEM� whereas a hadron will deposit most of its energy in the CHA� We de	ne the

variable �Hadem� as the ratio of hadronic to electromagnetic ET measurements�

and again there are two�tower and three�tower varieties� The distributions are

shown in Figure ���� in which can be seen the long tails due to shower leakage�

The Level � trigger requires Hadem� � ����
� O�ine� we make a tighter cut on

the three�tower quantity� Hadem� � ����

Because hadrons produced close to the electron will obscure the Hadem mea�

surement� the Hadem cut is an implicit isolation cut� Since we are looking for

electrons from b decay� the electrons will be produced in association with hadronic

jets resulting from the b fragmentation� If the electron is buried within the jet� it

will be not be detected�
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Figure ���� Lshr distributions after other cuts have been applied� The Level �

trigger applies the cut Lshr� � ���� The more stringent cut� Lshr� � ���� shown

by the arrow� is applied o�ine�
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Figure ���� Hadem distributions after other cuts have been applied� The trigger

cut is Hadem� � ����
� whereas the o�ine cut is Hadem� � ��� as shown in the

lower 	gure�
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����� Shower Shape

The CES provides orthogonal views of the shower in the CEM� A typical shower

will be measured by several adjacent CES channels� and therefore these two views

can be compared with measurements performed in a test beam� ���� A measure of

the match is provided by a 
� formula�


� �
�

�

��X
i�

qobsi � qpredi ��

��qi
� ����

where the qi are normalized pulse heights and �qi the uncertainties� A cut on


� distinguishes electrons from hadrons because of their di�ering shower develop�

ments� The trigger uses the cuts 
� � �� in the strip view and 
� � �
 in the wire

view� The distributions are shown in Figures ��� and ���� We cut slightly tighter

o�ine at 
� � �� in both views�

Eleven channels are used in a CES cluster to distinguish individual electron

showers from photon pairs from �� decay� These photon pairs are typically sep�

arated by several centimeters� and are therefore generally contained in the same

cluster� but with large 
��s�

����� Track�cluster Matching

Since the electron leaves a track in the central trackers� hits in the CES� and

energy in the calorimeter� we have three measurements of the same particle in

three complementary detectors� The best strip cluster in the CES is taken to be

the highest�energy cluster consistent in position with the calorimeter cluster� and

similarly for the best wire cluster� The best track is the highest�pT track pointing

to any tower in the cluster� The trigger requires the CEM energy to exceed � GeV�

and that the track have pT � � GeV�c� The number of fully reconstructed CTC

tracks pointing to the calorimeter cluster is plotted in Figure ��
� To make sure that
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Figure ���� Strip�view shower shape 
� after other cuts� The trigger cut is 
� � ���
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Figure ���� Wire�view shower shape 
� after other cuts� The o�ine cut is 
� � ���
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the energy measurement is not signi	cantly contaminated by nearby hadrons� only

one additional track is permitted to point to the calorimeter cluster� Furthermore�

since we will use the SVX to reconstruct the charm hadron� we require that the

electron has been tracked in the SVX�

Figure ��
� Number of tracks pointing to CEM cluster� The cut� shown by the

arrow� allows at most one additional track�

To compare the track with the CES position measurements� the track is extrap�
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olated to the CES� The mismatch between the CES cluster and the extrapolated

track is shown in Figures ��� and ���� The x� or wire� view must be consistent

within � cm� and the z� or strip� view within � cm�

Figure ���� Wire�view di�erence between shower position and track extrapolation

to CES� The arrows indicate the selected events�

The measured energy and momentum of the electron candidate may also be

compared� Figure ��� shows the ET�pT distribution after all the other cuts� It is
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Figure ���� Strip�view di�erence between shower position and track extrapolation

to CES� The arrows indicate the selected events�
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peaked at unity� as expected� We require that the ET be not more than twice the

pT �

��� W Removal

The decay of a realW boson to an e�e pair is characterized by a very isolated high�

energy electron produced in an event with large missing energy due to the unde�

tectable neutrino� We select events with electronET exceeding �
 GeV and missing

transverse energy greater than �� GeV directed into the opposite ��hemisphere as

the electron� The isolation requirement is that the towers bordering the electron

cluster contain less than � GeV in total ET � The electron is also required to origi�

nate from near the primary vertex� as would be expected for W decay� in this case

within ��� cm� If the event passes all these cuts� it is removed as a W candidate�

��� Conversion Removal

Another background source of electrons is that of photon conversions to e�e� pairs�

In these events� the two leptons are produced nearly parallel to one another� We

scan through the other tracks in the event and calculate � cot 	 between them and

the candidate electron track� and the quantity S� which is the transverse separation

between the electron and partner track where the two tracks are parallel in the

transverse plane� Conversions are characterized by small � cot 	 and S� These

quantities are shown in Figure ���� There is a clear excess of nearly parallel tracks

at small � cot 	� This excess is attributed to photon conversions� We therefore

identify conversions with the cuts jSj � ��� cm and j�cot 	j � ���� and eliminate
them from our data sample� This elimination leaves some residual conversions�
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Figure ���� Ratio of the electron transverse energy� as measured in the calorimeter�

and transverse momentum� as measured from the CTC track� The cut selects

events below the arrow� with ET�pT � ��
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mostly due to the failure to reconstruct the partner track�

Since photons can only convert near matter� plotting the radius at which con�

versions occur yields Figure ���� in which features of the inner tracking chambers

can be clearly seen�

��� Level � Trigger

The Level � trigger response is modeled from data by counting events passing

the � GeV trigger within some parent sample� For the shape of the turn�on� the

pre�scaled � GeV trigger sample is used as the parent sample� For the absolute

normalization of the plateau� the muon trigger sample is used� where the muon

is in a di�erent � wedge from that of the electron in the event� The trigger

parameterization is the product of two error functions which model the separate

calorimeter and CFT turn�ons� with low�energy and high�energy plateaus

PCEM	ET � � A

��B�freq

�
ET � ��
$�

�
freq

�
ET � ��
$�

�
!B

�
� ����

where the function freqx� is de	ned in terms of the standard error function erfx��

freqx� � � !
�

�
erfx�� ����

A binomial likelihood function is used to the 	t the data�

logL �X
i

�ni log PCEM	 ! mi � ni� log�� PCEM	�� � ��
�

wheremi are the number of � GeV or muon triggers in the bin i� and ni the number

of events 	ring both the parent trigger and the � GeV trigger in that bin� The 	ts

are shown in Figure �����
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Figure ���� Top� transverse separation� jSj� of the nearest partner track to the
electron� S � � cm indicates non�intersecting helical tracks� The distribution is

skewed negative because most tracks do intersect� Bottom� �cot 	 distribution

for nearest partner tracks solid�� and for those with jSj � ��� cm� In both plots
the arrows show the conversion identi	cation cuts�
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Figure ����� Radial pro	le of the detector from identi	ed photon conversions�
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Figure ����� Number of CEM� triggers within the parent trigger samples� divided

by the number of parent triggers� for the CEM� parent trigger left� and the muon

parent trigger right�� The curve is the parameterized 	t� PCEM	ET �� to these

binned e�ciency measurements of the Level � CEM� trigger�
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��� Summary

The electron identi	cation cuts are summarized in Tables ��� and ���� After these

cuts� there are ������ electron candidates with an ET spectrum shown in Fig�

ure ����� The events containing these electron candidates is the data sample in

which we will look for �c�s�

Figure ����� Electron ET spectrum after all cuts except for the ET cut�
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Trigger � GeV

Fiducial towers � to �

jxCESj � ���
 cm
jzCESj � �� ���� cm
or jzj � ���� ���� cm

Energy sharing Level � Lshr� � ���

Level � Hadem� � ����


O�ine Lshr� � ���

O�ine Hadem� � ���

Shower shape 
�s � ��


�w � ��

Track�cluster matching � or � tracks

pointing to the cluster

j�xj � ��� cm
j�zj � ��� cm
ET�pT � ���

highest�pT track

has an SVX link

ET � ��� GeV

pT � ��� GeV

Table ���� Electron identi	cation cuts�



���� SUMMARY ��

W electron removal ET � �
 GeV

missing ET � �� GeV�

direction opposite electron in �

border ET � � GeV

electron track impact parameter d� � ��� cm

Conversion electron removal jSj � ��� cm
j�cot 	j � ����

Table ���� Identi	cation cuts for removing W and conversion electrons�
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Event Reconstruction

The distinctive features of �b semileptonic decay are the �c and the electron� and

that they are produced with opposite charges� Therefore we look for �c�s in the

data sample of electron candidates� there should be an excess of e���c and e
���c

�right�sign�� pairs over e���c and e
���c �wrong�sign���

To 	nd �c candidates� we use the decay mode ��c � pK���� This decay mode

yields three long�lived charged particles which can easily pass through the CTC

volume� On the other hand� the �c has a lifetime of only �� �m� If it is in the

proper 	ducial region� its decay products will also pass through the SVX� We use

the SVX�CTC tracks to reconstruct �c candidates� taking advantage of the CTC�s

momentum resolution and the SVX�s tracking resolution to purify the resulting

sample�

��� Track Reconstruction

Charged track reconstruction at CDF begins by reconstructing the track stubs

in each of the CTC superlayers� These stubs are then joined into CTC tracks�

��
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starting from stubs in the outermost superlayer� For the purpose of eventually

calculating the CTC track reconstruction e�ciency� we require that the track exit

the chamber at a radius greater than ��� cm� thus ensuring that the track has

crossed all superlayers� In the ������ T axial magnetic 	eld� this cut implicitly

requires that the track have pT � ��� MeV�c� but we use a higher threshold�

�
� MeV�c� above which the tracking e�ciency is well understood� ����

Joining the stubs into tracks also resolves the left�right ambiguity inherent in

stub reconstruction� since an individual wire cannot tell from which side the ioniza�

tion originated� Resolving this ambiguity is further assisted by the CTC geometry�

With the wire cells tilted �
� with respect to the radial direction� the alternate

stubs typically have signi	cantly di�erent impact parameters which prevent their

linking with stubs in other superlayers�

Multiple hits on a single wire are the leading cause of hit ine�ciency� Regions of

high track density� such as in jets� therefore yield lower tracking e�ciency� Indeed�

for tracks with pT � �
� MeV�c� the CTC tracking e�ciency can be parameterized

as a function of the number of overlaps with another track in the event� as described

in Section ������ We therefore impose the same requirement on the tracks in this

analysis� A further manifestation of this ine�ciency is that the inner superlayers

are often unusable for track reconstruction� not only because of the higher density

characteristic of smaller radii� but also because of the plethora of low�pT particles

which cannot be reconstructed� The SVX� with its considerably higher sense wire

density� can therefore signi	cantly improve CTC track measurements�

A well�measured CTC track typically has an impact parameter resolution of

about �
� �m� SVX tracks are reconstructed by searching for SVX hits within

a �� road around the extrapolated CTC track� starting from the outermost layer

and working inwards� re�extrapolating the track with each additional hit� The
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resulting SVX track typically has an impact parameter resolution of about 
� �m�

The reconstruction algorithm admits the possibility of mis�steering a track by

associating spurious SVX hits with the CTC track� However� this e�ect is limited

by the �� road� We also apply a track 	t 
� cut of � per hit� and require that

four SVX hits may be expected for the track� This requirement de	nes the 	ducial

volume for which the SVX tracking e�ciency is de	ned�

��� Vertexing

The short lifetime of the �c not only allows us to require that our tracks include

SVX information� but also to consider the tracks only on short distance scales 

that is� as straight lines� ignoring the curvature induced by the magnetic 	eld� This

approximation allows us to use a simple least�squares 	t to vertex three tracks�

To reconstruct the �c� we use tracks which fall within the z region jz� � zej �
� cm� where z� is the z of the track at its point of closest approach to the z axis�

and ze is the z� of the electron track� This cut eliminates tracks from other colli�

sion vertices in the beam crossing� As shown in Figure ���� tracks from the same

collision vertex fall well within this window� We also eliminate some tracks from

consideration by requiring that the combined invariant mass of the electron and

the track� assigning the track the �� mass� is less than ��
 GeV�c�� This cut elim�

inates tracks which are inconsistent with b quark semileptonic decay� As shown in

Figure ���� ��
 GeV�c� is well above the corresponding mass distributions for the

�c daughters� Since the cut is used only to reduce computing time by eliminat�

ing tracks from consideration� we are only concerned that it be fully e�cient for

reconstruction� and make no attempt to optimize it�

We loop through all the remaining tracks� forming three�track combinations
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Figure ���� z� � ze distribution for tracks in electron data� The arrows indicate

the jz� � zej � � cm window used in this analysis�
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Figure ���� Monte Carlo generator�level mass distributions for the �c daughters�

when the �c originates in �b semileptonic decay� The hadronic track has been as�

signed the �� mass� All three tracks fall below the ��
 GeV�c� cut which eliminates

non�b tracks� The lower right plot shows the same distribution in data�
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where the total charge is ��� The least�squares 	t must have a 	t 
� � ��
� cor�
responding to a 	t probability exceeding ��� The 
� distribution from simulated

�c decays is shown in Figure ����

Figure ���� Simulated vertex 
��s� The solid histogram is of the simulated signal�

and the points from data sidebands� both normalized to unit area�

The transverse event topology is shown in Figures ��� and ��
� The beam po�

sition and slope is measured for each run by the tracking detectors� the primary
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vertex is taken to be the beam location at the z� of the electron track� All topo�

logical cuts are made with respect to this primary vertex� To make sure that the

three�prong vertex is reasonably well measured� we require that the uncertainty on

its transverse �ight distance� �L�Pxy � is less than ��� �m� Figure ��� shows that this

cut keeps most of the signal�

Figure ���� Transverse event topology� showing possible topological cut quantities

db� Lb
xy� and L

�P
xy � for vertex selection�
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Figure ��
� Transverse event topology� showing possible topological cut quantities

dp� dK� and d�� for track selection�
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Figure ���� Simulated transverse �ight distance uncertainties� The solid histogram

is of the simulated signal� and the points from data sidebands�
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We assign the masses of the three tracks as follows� one track�s charge will be

di�erent from that of the other two� this track we assign the K� mass� The same�

sign tracks are alternately assigned the proton and pion masses� This ambiguity

presents the possibility of the same track combination appearing twice in the mass

distribution� This issue is discussed in Section 
�����

If the �c candidate mass falls between ��� and ��
 GeV�c�� we extrapolate the

�c backwards� opposite its �ight direction� and intersect it with the electron track�

The epK� mass is then required to fall between ��
 and � GeV�c�� to make sure it

is consistent with �b decay� As will be seen later� the lower bound distinguishes �b

decay from that of B mesons� The upper bound eliminates a signi	cant amount

of background� much of which is higher in mass than the signal� as shown in

Figure ����

Since most tracks are prompt� and therefore vertex very near the primary vertex

with other prompt tracks� we require that the transverse �ight distance� L�P
xy �

exceed 
�� �m� This cut signi	cantly reduces the combinatoric background�

The cuts described in this section are listed in Table ���� In the next section�

we will use Monte Carlo and data to optimize a set of cuts to 	nd the �c signal in

the electron dataset�

��� Cut Optimization

In a counting experiment� the statistical error on a signal of size S is
p
S !B�

where B is the background� Minimal statistical error is achieved� therefore� when

S��S!B� is maximized� Where the signal is small compared to the background�

however� S��B is a reasonable approximation� It has the further advantage of

its minimum being insensitive to the relative normalizations of the signal and
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Figure ���� Generator�level epK� mass spectrum for �b decay solid�� and from

the data sidebands points�� This analysis uses epK� combinations between ��


and � GeV�c��
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SVX quality � � hits

� � � per hit

� hits expected

CTC quality exit radius � ��� cm

daughter tracks pT � �
� MeV�c

jz� � zej � � cm
me����� � ��
 GeV�c�

�c candidate P 
�� � ��

L�P
xy � 
�� �m

�L�Pxy � ��� �m

�b candidate mepK�� � ��
� �� GeV�c�

Table ���� Cuts applied to the monte carlo signal and data sidebands before opti�

mization�
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background models� If one has a collection of events which re�ect a reasonable

model of the signal and of the background� he can obtain an estimate of S��B for

a given set of cuts simply by counting the modeled signal and background events

which survive� The cuts can then be varied to maximize S��B�

We use Monte Carlo to model the signal behavior� For the background� we can

use data from the �c mass sidebands� We assume for this purpose that the distri�

butions which characterize the background underneath the signal vary smoothly

from the low to high sidebands� Since we use Monte Carlo to model the signal�

this method will not arti	cially enhance a statistical �uctuation�

It should be noted that for the rate calculation� the actual cuts used are ir�

relevent as long as the e�ciencies are measurable� The e�ect of the optimization is

to reduce the statistical uncertainty in the size of the signal� The method described

above is useful to 	nd a reasonable signal in an unbiassed manner� and depends

only upon a reasonable signal model� This optimization was done with an older

Monte Carlo model� However� this fact did not necessitate an update�

The Monte Carlo model used for the cut optimization was as follows� the b

quarks were generated and fragmented using PYTHIA version 
��� which incor�

porates the Lund symmetric fragmentation model as implemented by JETSET

version ���� Events containing �b�s were selected� and the �b�s decayed using the

QQ decay package� version ���� which in this case used a quark�level V �A model

for the exclusive decay �b � ��c e��e� The detector is simulated with QFL� which
re�ects the detector geometry and models the behavior of the various detector com�

ponents with parameterized distributions which have been tuned to match data�

A � GeV ET cut su�ces for the Level � trigger at this point�

The updated Monte Carlo is described in detail in Section ������ and amounts

to a complete overhaul� an integrated spectrum is used to generate the b quark
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pT �s� and the color�coherent Lund model is replaced by the independent Peterson

model� The �b decay is simulated with form factors described in Section ������

����� Cut Selection

The decay �c � pK� o�ers little in the way of helpful decay characteristics� For

instance� the two�body components of the pK� 	nal state�

��c � pK
��
�

K
�� � K���

��c � ��
������

��
���� pK�

��c � ���K��

��� � p��

do not help much� since all the resonances are wide� Furthermore� the resonant

components of the decay make up perhaps half the total pK� decay width�

We are therefore restricted to using straightforward cuts such as those on mo�

menta� �ight distances� and impact parameters� We can also use a cone cut to take

advantage of the boost of the decay� However� this cut is redundant with mass cuts�

All momentum cuts� whether for parent or daughter particles� are also correlated�

We have chosen to cut on the pT �s of the four observed daughter particles�

The cuts to be considered are therefore as follows�

� �c daughter tracks

� proton pT
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� kaon pT

� pion pT

� d��d� the impact parameter signi	cance of the daughter tracks� to select

tracks inconsistent with the primary vertex

� three�prong vertex� or �c candidate

� L�P
xy � the apparent �ight distance of the �c candidate� in the �p

�P
T direc�

tion� relative to the primary vertex

� epK� vertex� or partially reconstructed �b candidate

� Lb
xy� the apparent transverse �ight distance of the e�c combination� in

the �p �PT ! �p eT direction� relative to the primary vertex

� db� the impact parameter of the partially reconstructed �b with respect

to the primary vertex

An upper bound of � cm is applied to all �ight distance quantities� since these

combinations are likely to be random combinations� Straight cuts on �ight distance

quantities and db are preferred over signi	cance cuts because the latter can include

very badly measured vertices� On the other hand� d��d is preferred to select tracks

because badly measured tracks tend to have large errors and are thus removed

from consideration�

����� Results

We do not vary all seven cut thresholds simultaneously� Instead� we vary them

in order of importance� these are the thresholds with the most strongly peaked

S��B curves� The 	rst cuts we vary are therefore those on the �c daughter pT �s�
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daughter tracks ppT � ��� GeV�c

pKT � ��� GeV�c

p�T � ���
 GeV�c

jd���d�j � ��

�c candidate L�P

xy � 
�� �m

�b candidate Lb
xy � ���� �m
jdbj � �
� �m

other cuts D�� exclusion

proton dE�dx

Table ���� Reconstruction cuts after optimization�

The signal and background distributions are shown in Figure ���� and the S��B

curves are shown in Figure ���� The thresholds are set at ppT � � GeV�c and

pKT � � GeV�c� The pion pT cut is left at �
� MeV�c�

After the daughter pT thresholds are applied� the S��B pro	les broaden� The

jd���d� j� jdbj� and Lb
xy cuts are then optimized in that order� and the results shown

in Table ���� The L�P
xy threshold remains at 
�� �m� indicating that this threshold

could be placed lower� However� the cut was applied to reduce the combinatoric

background to a manageable level�

As will be discussed in Section 
����� a D� exclusion cut must be applied to

eliminate D� re�ections� the proton candidate track is assigned a pion mass and

paired with the kaon� If the mass falls between ����
 and ����
 GeV�c�� that

is� consistent with a D� mass� then the mass di�erence is computed between the

D� combination and the D�� combination� If this mass di�erence is less than

���
 GeV�c�� the three�prong vertex is rejected�
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Figure ���� Simulated �c daughter track pT spectra with only pre�optimization

cuts applied solid�� The points are from data sidebands� The pion cut is left at

the �
� MeV�c minimum�
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Figure ���� S��B pro	les for �c daughter track pT cuts� The pion pT cut is set

at �
� MeV�c� the minimum threshold� The lower right plot shows the result

of simultaneously varying the proton and kaon pT cuts� There is no di�erence

between varying the two cuts independently and simultaneously�
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Figure ����� d���d� distributions from Monte Carlo solid� and data sidebands

points�� The lower right plot shows the S��B pro	le as all three thresholds are

varied simultaneously�
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Figure ����� Top� db distributions from Monte Carlo solid� and data sidebands

points�� Bottom� S��B pro	le� S��B decreases slowly in the positive direction�
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Figure ����� Top� Lb
xy distributions from Monte Carlo solid� and data sidebands

points�� Bottom� S��B pro	le� S��B decreases slowly in the negative direction�
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Figure ����� Top� L�P
xy distributions from Monte Carlo solid� and data sidebands

points�� Bottom� S��B pro	le� The L�P
xy � 
�� �m cut is the minimal cut� having

been applied to reduce combinatorial background before optimization�
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Finally� the dE�dx measurements from the CTC are used to make sure that

the energy loss along the proton candidate track is consistent� within about ���

with that of a real proton�

The e�ciency of these cuts will be discussed in Section ����

����� Monte Carlo

As mentioned previously� the cut optimization is somewhat historical� performed

with a Monte Carlo package later superseded� For the purpose of e�ciency and ac�

ceptance calculation� as well as for comparing Monte Carlo and data distributions�

we use another package� In this updated simulation� the b quarks are generated

according to the next�to�leading�order calculation of Nason� Dawson� and Ellis

with mass scale � � �� and b quark mass ���
 GeV�c�� ��� The b quark is then

hadronized into a �b using the independent fragmentation model of Peterson with

� � ������ ��� For the exclusive semileptonic decay distribution we use Scora�s

quark potential model calculation� ���� The detector simulation is the same as be�

fore� The Level � trigger is simulated by weighting each event in any histogram by

the trigger parameterization�

Besides the model di�erences� the updated Monte Carlo generates only the �b�

Underlying event and fragmentation particles are not simulated� Their e�ect on

the simulation will be discussed in Section ������

The updated Monte Carlo has the advantages not only of using distributions

tuned to previous experimental data� as well as a more sophisticated decay model�

but also of speed� A sample of two million �b�s was generated with the updated

Monte Carlo� The mass distribution for the right�sign events is shown in Fig�

ure ����� The width is ��� � ��� GeV�c��
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Figure ����� Monte Carlo right�sign e�c signal�
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��� Data

Applying our event selection to the data� we 	rst reconstruct D��s as a check� The

resulting signal is shown in Figure ���
� We reconstruct ��������
 events at a mass
of ���������� MeV�c�� The ���� world averageD� mass is ���������� MeV�c�� ���
The width� at ���� ��� MeV�c�� is consistent with the Monte Carlo expectation�

Figure ���
� K�� mass distribution of right�sign eK�� combinations in data�

Figure ���� shows the right�sign combinations in data after applying the above
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cuts to the 	tted pK� vertices� There is an obvious signal at the �c mass� Fitting

the signal with a gaussian over a linear background shows that the peak consists of

�
��� ��� signal events at a mass of ������� ��
 MeV�c�� The ���� world average
mass is ���
������ MeV�c�� The width is ������� MeV�c�� again consistent with
the Monte Carlo expectation�

Figure ����� pK� mass distribution of right�sign epK� combinations in data�

The wrong�sign combinations shown in Figure ���� show no discernible �c
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signal� If the mass and width are 	xed to the values they hold in Figure ����� the

yield is 
�� � 
�� events� due to the one high bin� Since it lies near to a low bin�
we expect this is due to statistical �uctuations in the background�

Figure ����� pK� mass distribution of wrong�sign epK� combinations in data�

We can compare data and Monte Carlo distributions for kinematic distribu�

tions� For this purpose� we select the mass region between ���� and ���� GeV�c�

as the signal region and compute the background contribution to this region by
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linear extrapolation from the sidebands� We then subtract the distribution from

the sidebands� normalized to the computed background contribution� The results

are shown in Figures ���� and ����� The signal being small� little more can be

said than that the signal in data behaves in a manner consistent with Monte Carlo

expectations for �b semileptonic decay�

Figure ����� Comparison between sideband�subtracted data points� and Monte

Carlo histogram� distributions�
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Figure ����� Comparison between sideband�subtracted data points� and Monte

Carlo histogram� distributions for �c daughter tracks�



Chapter �

Backgrounds

A right�sign �c signal does not by itself prove that �b�s have been produced� It

merely shows that there is a sign correlation� To show that the sign correlation

is a �b signal� one must enumerate other possible sources of sign�correlated �ce

pairs and either show that they do not contribute to the signal� or that they

contribute negligibly� The 	rst backgrounds we will consider will consist of real

electrons and real �c�s� These include b hadron decays� bb and cc pairs� and real

�c�s produced in conjunction with conversion electrons� Second� we will consider

those backgrounds where a real electron is associated with a fake �c candidate�

These include re�ections from other charm particles as well as from �c itself� and

the combinatoric background for pK� mass combinations� Finally� hadronic fake

�electrons� will be considered�

��� b Hadron Decays

Possible b hadron decays with electrons and �c�s in their 	nal state are as follows�

��
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� �b � ��c D�
s X�

D�
s � e�X �

� B � ��c D�
s X�

D�
s � e�X �

� B � ��c e��eX

It should be noted that there are no direct experimental observations of these decay

modes� CLEO has reported upper limits on the last process� ���� and D�
s � e�X �

is only known as an upper limit� ���� However� even with small branching fractions

and smaller e�ciencies due to antibaryon production� the B meson decays must be

examined� since B meson production is expected to an order of magnitude greater

than that of b baryons�

����� �b � ��
c
D�

s
X�D�

s
� e�X �

This 	rst mode represents a hadronic decay of �b� The simplest diagram for this

process� excluding additional hadrons� is illustrated in Figure 
��� Physically� its

rate is suppressed by the Ds semielectronic branching fraction� for which there is

a ��� C�L� limit of ���� We have simulated this �b decay mode assuming phase

space decay distributions and no additional hadron production� The electron�

as is typical with electrons from charm decay� is softer than those from bottom

decay� The epK� mass distribution is also softer� as shown in Figure 
��� The

resulting e�ciency is ����� of the standard value� The branching fraction may be

reasonably expected to be within a factor of two of that of the corresponding decay

B � D
��
s D
��� which is 
��������� ��� We therefore deduce that this decay mode

contributes less than one half an event to the signal�
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Figure 
��� Lowest�order diagram of the process �b � ��c D�
s � a background to the

�b semileptonic decay signal when the D
�
s decays semileptonically�

����� B � ��c D
�

s NX�D�

s � e�X �

This decay mode is the analogue of the above� the parent particle being a meson

instead of a baryon� This process is shown in Figure 
��� The antibaryon must be

produced to conserve baryon number� This e�ect softens kinematic distributions

for the other daughter particles� It has been simulated with phase space distri�

butions and no additional hadrons� and we note from the resulting distribution

shown in Figure 
�� that all the events fall below the ��
 GeV�c� epK� mass cut�

They cannot contribute to the signal�

����� B � ��c e
�N�eX

This is the semileptonic decay of a B meson with a �c in its 	nal state� as shown

in Figure 
�
� CLEO has measured the branching fraction of B mesons produced

at #�S� to any 	nal state including a charm baryon� ����

BrBu�d � charm baryonX� � ����� � ����� � ������ 
���
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Figure 
��� Top� Monte Carlo epK� invariant mass left� and electron pT right�

distributions for the process �b � ��c D�
s followed by D

�
s � e�X� to be compared

with bottom plots for �b � ��c e��e�
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Figure 
��� Lowest�order diagram of the background process B � ��c D�
s N � where

N is the appropriate antibaryon�

An upper limit has also been established for the semileptonic decay� relative to the

branching fraction to any 	nal state including a �c� ��
�

BrBu�d � ��c e��eNX�

BrBu�d � ��c X ��
� 
������C�L��� 
���

We combine these two measurements� assuming that �c saturates the 	rst branch�

ing fraction� and taking the upper limit of the second as the branching fraction�

to get

BrBu�d � ��c e��eNX� � ����� 
���

It should be noted that if charm baryons are produced in Bu�d decay other than

�c� and those charm baryons do not decay through �c� the above rate limit will

be smaller�

As in the Bu�d � ��c D�
s NX case� the extra antibaryon softens the kinematic

distributions� though in this case the e�ect is not as noticeable since the electron is

from bottom rather than charm decay� The main di�erence is that the mepK�� �

��
 GeV�c� requirement eliminates about half the meson signal� but keeps most of
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Figure 
��� Simulated epK� mass distributions for Bu�d � ��c D�
s N followed by

D�
s � e�X top� and Bs � ��c D

�
s N middle�� to be compared with that for

�b � ��c e��e�
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Figure 
�
� Lowest�order diagram of B meson semileptonic decay� with a �c in the

	nal state�

the �b events� The e�ciency for these baryonic Bu and Bd decays� without any

additional decay products� is measured to be ���� of that of �b � ��c e��e� If we
assume that the production ratio of Bu and Bd to �b is ����
����� each� and that

the �b semileptonic branching fraction is a conservatively low 
� it is more likely

to be about ��� as indicated in Section ��� then this decay mode contributes at

most �� of the e�c signal� which in this case is ��� of an event�

There is no corresponding measurement for the decay mode Bs � ��c e��eNX�

but since the strange quark is a spectator in the decay we assume for the purpose

of this background study that the branching fraction is the same� In this case the

e�ciency is ���� of the �b e�ciency� If we assume that the production fraction of

Bs to �b is ���
������ then this decay mode contributes less than ��� events to the

signal�
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Figure 
��� Electron pT distributions for simulated semileptonic b hadron decays

with a �c daughter�
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Figure 
��� Monte Carlo mepK�� mass distributions for semileptonic b hadron

decays with a �c daughter�
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��� Quark Pairs

Quarks are generally produced in quark�antiquark pairs� If one produces a �c

while the other eventually produces an electron� these events represent a potential

sign�correlated background to our signal� Since in such events the angle between

the �c and the electron is not constrained by the mass of the parent particle� most

of this background is eliminated by the upper limit on the e�c mass� However� in

high�energy pp collisions� gluon splitting� which produces the quark and antiquark

with small angular separation� becomes increasingly important� We consider both

bb and cc pairs�

����� bb Pairs

If the bb pair resulted from gluon splitting� the two quarks are nearly collinear�

and therefore might produce an electron from one b and a �c from the other with

small combined invariant mass� However� it should be noted that if the electron

originates from the opposite b quark decay� this process produces wrong�sign pairs�

of which none are seen in data� If the electron comes instead from the opposite

charm decay� the process yields a right�sign pair� but is further suppressed by

its softer pT spectrum� as well as its branching fraction� If we assume that all

b decays produce charm hadrons� and that the semileptonic branching fractions

of these charm particles are about ���� as in the case of the upper limit on Ds

semielectronic decay� then the right�sign yield of this process is about the same as

the wrong�sign yield resulting from direct b semileptonic decay� Since no wrong�

sign pairs are observed� we neglect the right�sign contribution from bb pairs as

well�
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����� cc Pairs

In the case of cc pairs� the �c must have resulted from one of the c quarks� and the

electron from the other� Again� if the pair was not produced by gluon splitting� the

combinedmass in unrestricted� and most of these fail that cut� However� regardless

of how the quark pair was produced� the �c is prompt� Since c�c � �� �m� the


�� �m �ight distance cut eliminates most of the possible contribution of this

process to the signal� We therefore include no background from this source�

��� Conversion Electrons

As described in Section ��
� conversion electrons result from processes unrelated

to b hadron decay� Moreover� the conversion process does not preferentially boost

either the electron or positron to higher energy than the other� Therefore we expect

no sign correlation between real conversion electrons and �c candidates�

We have isolated a sample of conversion electrons and can check this expec�

tation� As shown in Figure 
��� the rate is small� and there is no hint of a �c

signal among either right�sign or wrong�sign combinations� Indeed there is no sug�

gestion that the sidebands are correlated� either� From Monte Carlo studies� this

conversion sample represents about ��� of the actual conversions in our total data

sample� and we expect that the unseen conversions behave in like manner� We

therefore include no background from such e�c combinations�
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Figure 
��� pK� mass distribution in data for right�sign top� and wrong�sign

bottom� epK� combinations where the electron has been identi	ed as a photon

conversion daughter�
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��� Charm Re�ections

����� �c Duplicates

Since the proton�pion dE�dx separation is only about �� in the relativistic rise re�

gion� many pions will have dE�dx measurements statistically consistent with those

of protons� As a result� many real �c�s will enter twice into the mass spectrum� one

with the correct mass assignment� and the other with the proton and pion mass as�

signments switched� If the mass spectrum resulting from the misassignment peaks

underneath the �c signal� it may deceptively enhance it�

This distribution may be checked with generator�level Monte Carlo since the

most important cuts a�ecting the mass distribution are those on pT and combined

mass� As shown in Figure 
��� the �c duplicate distribution is relatively broad and

�at in the region of interest� Fitting the combinatoric background below the signal

has the e�ect of subtracting this background as well�

����� Re�ections from Other Charm Hadrons

Charm mesons have three�prong decays corresponding to ��c � pK����

� D� � ��K���

� D�
s � K�K���

When one of the daughters in these decays is misidenti	ed as a proton� it is topo�

logically indistinguishable from the process which interests us� Since most of the b

quarks produce B mesons� these re�ections are a high�rate� sign�correlated back�

ground to the �c signal� As in the case with the �c duplicates� the resulting mass

distributions have been checked with generator�level Monte Carlo with B meson
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Figure 
��� Generator level mass distribution of ��c � pK��� where the proton

and pion masses have been switched� The arrows indicate the �c mass region�
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mixture Bu � Bd � Bs � ����
 � ����
 � ���
� For the D and Ds� they are broad in

the region of interest� as shown in Figures 
��� and 
���� and will be subtracted

with the combinatoric background and �c duplicates�

Figure 
���� Re�ections from D� � K���� events� using generator�level simula�

tion of B and Bs mesons� The arrows indicate the �c mass region�

More problematic is the case where a B meson gives a D�� which decays to

D���� the D� decaying further into K���� When the pion from the D� decay
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Figure 
���� Re�ections from D�
s � K�K��� events� using generator�level simu�

lation of Bs mesons� The solid histogram is from misassigning the proton the kaon

mass� and the dashed curve is from misassigning the proton the pion mass and the

pion the kaon mass�
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is misassigned the proton mass� the re�ected mass distribution strongly peaks

underneath the �c signal� as shown in Figure 
���� Several factors serve to suppress

these re�ections� 	rst� the D� is long�lived� with c � ����� �m� However� the D�

may decay close enough to the D�� decay vertex that the K����� combination

may be 	t into one vertex� albeit with a large 
�� Second� the pion from the D��

decay is typically very soft and is therefore not reconstructed�

However� it is possible to entirely eliminate this background� The D�� mass

di�erence distribution� shown in Figure 
���� shows that all the D���s have mass

di�erences mK�����s ��mK���� � ���
 GeV�c�� where �s indicates the pion

from the D�� decay� At the same time� as shown in Figure 
���� generator�level

Monte Carlo indicates that very few �c�s pass this cut when the proton is misas�

signed the pion mass� This number is further reduced if one makes a mass window

cut around the D� as shown in Figure 
��
� Hence few �c�s are lost when all D
���s

are eliminated from the sample�

��� Combinatorial Background

The combinatorial background results from the random association of any three

tracks in the event passing the cuts� This background forms most of the wrong�sign

mass distribution� which shows no evidence for a �c�like signal� It is subtracted

by 	tting a linear function underneath the gaussian signal function�

��� Hadronic Fake 	Electrons


Hadrons may sometimes shower early in the calorimeter� leaving signi	cant elec�

tromagnetic energy deposition which may be mistaken for that of an electron�
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Figure 
���� Re�ections from D�� � D���s � D
� � K��� events� using generator�

level Monte Carlo� The pion from the D� decay has been misassigned the proton

mass� If the other pion is assigned the proton mass� the spectrum lies in a higher

mass region than shown here�
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Figure 
���� mK��s��mK�� mass di�erence distribution for the decay D�� �
D���s followed by D

� � K����
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Figure 
���� mK��s� �mK�� mass di�erence distribution for �c decay� where

the proton has been given the pion mass and combined with the K into the D��

The region below ���
 GeV�c� is only ���� of this distribution�
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Figure 
��
� mK�� mass distribution for �c decay� where the proton has been

given the pion mass� The arrows demarcate the D� mass window� from ����
 to

����
 GeV�c�� If the �c pion is used instead of the proton� the resulting mass

distribution lies entirely below this plot�
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Possible sign correlations with these fake electrons have been investigated using

data� a high�pT track which has not been identi	ed as an electron candidate is

taken as the fake �electron� and associated with a �c candidate� The results are

shown in Figure 
���� There is no evidence of a sign correlation either in the signal

or sideband regions�

Figure 
���� pK� mass distribution for right�sign top� and wrong�sign bottom�

combinations with a high�pT non�electron track�
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��� Conclusion

In this chapter we have enumerated the possible backgrounds to the right�sign �c

signal and demonstrated that they either contribute negligibly to the signal� are

eliminated by the cuts� or have been subtracted by 	tting the sideband distribution�

We therefore take the �
�� reconstructed right�sign �c events to be evidence of �b

production and semileptonic decay at CDF� In the next chapter� we will use these

events to measure the rate of this process�
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Rate Measurement

Having concluded that the observed sign�correlated e�c signal is due to �b pro�

duction and semileptonic decay� we can calculate the rate of this process� We use

the formula

�bp
b
T � ���
 GeV�c� jyj � ���

f�bBr�b � ��c e��eX�Br��c � pK���� ����

�
Ne�c

�LE
where the terms are de	ned as follows�

� �bpT � ���
 GeV�c� jyj � ��� the b quark production cross section for the
speci	ed pT and rapidity range�

y �
�

�
ln

�
E ! pz
E � pz

�
� ����

� f�b� probability of producing a �b from direct b fragmentation or decay of

higher resonance b baryons�

� Br�b � ��c e��eX�� the inclusive semileptonic branching fraction�

���
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� Br��c � pK����� the exclusive ��c branching fraction�

� Ne�c � number of right�sign e�c combinations observed above background�

� L� integrated luminosity of the data sample� and

� E� the e�ciency and acceptance�

We already have one factor�

Ne�c � �
�� � ��� ����

from Section ���� L and E are the subjects of the next sections�

��� Luminosity

The instantaneous luminosity can be calculated either from accelerator parameters

or by comparing trigger rates with another experiment� in this case UA� at SppS�

which has performed an absolute cross section measurement� albeit at a di�erent

center�of�mass energy� ��� The 	rst method gives an uncertainty of about ����

and is used at CDF mostly as a check on the second method� which is described

below� ���

The BBC trigger rate at a given center�of�mass energy is the product of the

BBC trigger cross section� �
p
s

BBC� and the luminosity as calculated from accelerator

parameters� L
p
s

acc� corrected by a factor 

p
s which takes into account multiple

interactions per beam crossing�

R
p
s

BBC � �
p
s

BBCL
p
s

acc�

p
s� ����

The trigger cross section includes all physical processes which would produce a

BBC trigger� As noted in Section ����
� the average collision rate in ������� was
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more than one per bunch crossing� Using Poisson statistics� the probability of a

second interaction given the 	rst is found to be

P�R
p
s

BBC� � ���
 � ���� �R
p
s

BBC� ��
�

where R
p
s

BBC is the BBC rate in Hertz� This probability has been checked with

vertex reconstruction in data� which yields ���� � ����� � ���� as the coe�cient�
which is within �� of the predicted value� The correction factor is then



p
s � � ! P�R

p
s

BBC�� ����

The cross section at
p
s � ���� GeV is therefore related to that at

p
s � 
�� GeV

by the ratio
�����BBC

����BBC

�
R����
BBC

R���
BBC

L���
acc

L����
acc


����


���
� ����

which is insensitive to systematic e�ects in the overall normalization� The rates�

R
p
s

BBC� are measured quantities� and the instantaneous luminosities�L
p
s

acc� are calcu�

lated from accelerator parameters� with the ��� uncertainties dropping out in the

ratio� After further small corrections are made for energy�dependent beam�beam

interaction e�ects� all that remains is to calculate ����BBC� As mentioned above� a

calculation using accelerator parameters gives about a ��� error�

����BBC � ���� � ��� mb� ����

We may also use the UA� cross section measurement� which was also performed

at
p
s � 
�� GeV� This measurement must be corrected for geometric acceptance

and the measured e�ects of radiation damage on the BBC� and yields a 
� error�

����BBC � ���� � ��� mb� ����

These two measurements are averaged� weighted by their respective errors� to yield

����BBC � ����� ��� mb �����
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which then implies

�����BBC � ���� � ��� mb� �����

The instantaneous luminosity is then calculated from the instantaneous BBC rate�

L �
R����
BBC

�����BBC

� �����

where �����BBC is that measured above� The integrated luminosity is de	ned as

L �
Z
Ldt� �����

and is calculated for each data�taking run� The sum over good runs used in this

analysis represents an integrated luminosity of ����� ��� pb���

��� E�ciency

The reconstruction e�ciency for 	nding the e�c pair from �b decay is the product

of 	ve factors�

E � EMCECTCESV XEdE�dxEL�� �����

The 	rst is the e�ciency computed by simulating the event in the detector� this

factor also models the detector acceptance� The other factors are the CTC and

SVX tracking e�ciencies� the e�ciency of the proton dE�dx cut� and the Level �

trigger e�ciency� All but the last e�ciency are given as relative to the preceding

ones� The Level � e�ciency is relative to the detector acceptance� but is considered

independent of the others�

����� Monte Carlo E	ciency

The b quark cross section� as generally quoted� is proportional to the number of b

quarks produced above a pT threshold pmin
T and within a rapidity window jyj � ��
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The number of b quarks produced in this kinematic window is simply the cross

section multiplied by the integrated luminosity�

Nb � L�pT � pmin
T � jyj � ��� ���
�

The e�ciency must be de	ned relative to this kinematic window� However� we do

not know the original b quark energy or direction for any reconstructed �b� The

reconstructed events may in principle originate from b quarks outside the window�

For simulation purposes� we de	ne a larger window in which to generate events�

We note� 	rst� that CDF is sensitive to electrons only with pT � � GeV�c� The

Monte Carlo b quark pT spectrum for these electrons is shown in Figure ���� By

convention� we set pmin
T to where ��� of all these electrons originate from b quarks

with pT � pmin
T � In this case� pmin

T is set to ���
 GeV�c�

With pT � ���
 GeV�c� we see that b quarks with jyj � � fall outside the CDF
acceptance� Thus we count in simulation reconstructed events where the generated

b quarks fall in the larger rapidity window� jyj � �� but normalize the e�ciency to
the number of b quarks generated in the jyj � � window� If the former number is
denoted by N rec

jyj	� and the latter by N
b
jyj	�� the e�ciency calculation is

EMC �

�
�N rec

jyj	�
N b
jyj	�

�
A
MC

�����

where the numerator and denominator are counted from the same Monte Carlo

sample�

As noted previously� the standard Monte Carlo does not include the e�ects of

the underlying event and fragmentation jet particles� We calculate this e�ciency

factor independently using the cut optimization Monte Carlo with its pythia�

generated underlying event and fragmentation jets� We see the e�ciency decrease

by ��� and we correct the reconstruction e�ciency accordingly�
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Figure ���� b quark pT spectrum for events with electron pT � � GeV�c� Ninety

percent of the events have b quark pT � ���
 GeV�c�
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����� Tracking E	ciency

The tracking e�ciency can be broken into two parts� the probability that the track

is reconstructed in the CTC� and the probability that the track is linked to an SVX

track� The CTC tracking e�ciency has been parameterized as a function of an

isolation variable Q� which is de	ned as follows�

Q � ��min�� Noverlap�
�� �����

where Noverlap is the number of times the track overlaps with other tracks in the

event� The overlaps are counted at each sense wire layer� and are counted twice for

the innermost �� layers� to account for hits from unreconstructed soft tracks� Two

tracks are said to overlap at a layer if they are separated by less than a certain

distance ��� cm for the inner �� layers� ��� cm for the outer 
� at the layer�s

radius�

The tracking e�ciency as a function of Q is given by ����

EQ� �
���
��
Emax Q � ��


Emax�x� ! � � �x��Q� Q � ��

� �����

A 	t to the data gives x� � ���� � ����� ���� Emax� the plateau e�ciency� has

been measured to be ���
 � ������ by embedding simulated tracks into raw data
events and testing whether the tracks are reconstructed� Knowing the e�ciency

function� we can correct the measured Q distributions of the reconstructed �b

events� This corrected distribution re�ects the sum of events found and events lost

due to tracking ine�ciency� Dividing the number of events found by the corrected

number gives the overall tracking e�ciency�

Using Figure ����� we de	ne the �c signal region to be between ���� and

���� GeV�c�� There are �� events in this window� which also contains �����
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of the gaussian peak of �
������ events� The sideband�subtracted Q distributions
for the �b daughter tracks are shown in Figure ���� Most of the signal tracks have

Q � ��
� and are thus reconstructed at the plateau e�ciency� As a result� most of

the events are reconstructed at the plateau e�ciency for four tracks� as shown in

Figure ���� The e�ciency for events within the signal region� including both signal

and background events� is ������ � ������ relative to the plateau e�ciency� The
e�ciency in the sidebands above and below the signal region is �����
 � �������
Figure ��� shows that the event e�ciency distributions in the upper and lower

sideband regions are similar� Assuming that the e�ciency in the sideband regions

is the same as that for the background events underneath the signal� we perform

a weighted subtraction to calculate the e�ciency for the pure �c sample� and get

����� � ������ Combining this number with the plateau e�ciency per track� the
total CTC tracking e�ciency is

ECTC � ����
 � ������������ � ������ �����

� ����� � ���
�� �����

The SVX tracks we use in this analysis require only the coincidence of two

hits when following the CTC track into the SVX volume� and that the CTC track

be such that it should hit all four SVX layers� The quality cuts on the track are

minimal� If the CTC tracks a charged particle which is actually outside the SVX

acceptance hence its SVX link is spurious the tracks will only contribute to the

background and not to the signal� If� on the other hand� the particle has left hits

in the SVX� but the reconstruction algorithm has selected the wrong hits� the SVX

track is steered wrong� Since the SVX does not signi	cantly enhance the CTC mass

resolution� the �c�s mass measurement is not a�ected� the steering only a�ects the

topological quantities such as �ight distance and impact parameters� However�
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Figure ���� Sideband�subtracted Q distributions�
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Figure ���� Event e�ciency distributions for events in the signal top�� low side�

band middle�� and high sideband bottom� regions�
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since the SVX track reconstruction algorithm is not biased towards the beam� this

e�ect smears the quantities symmetrically and does not change the reconstruction

e�ciency� We therefore take ESV X to be the probability of 	nding at least two hits
out of the four possible� This e�ciency is measured to be ����� in an early run�

and ����� in a late one� with � or �� statistical uncertainty in each� ���� We take

the average� ���� to be the single track e�ciency� and the di�erence� ����� as the

uncertainty� The SVX tracking e�ciency for the four tracks is therefore �������

����� dE�dx E	ciency

We calculate the dE�dx e�ciency for the proton using � GeV�c protons and an�

tiprotons from reconstructed �� and �� decays� The mass spectrum is plotted

in Figure ��� along with the proton pT spectrum� The di�erences between the

corrected and predicted dE�dx values� shown in Figure ��
� is centered near zero

and has a width of �� TDC counts� which is narrower than the �� counts found

for inclusive hadrons� ���� This narrower resolution is due to the higher pT of the

sample� If we include softer protons� the overall resolution is �� counts� In this

analysis� the dE�dx of the proton is required to be within �� counts� or twice the

resolution found for inclusive hadrons� of the predicted value� Using the proton

dE�dx plot� this cut has an e�ciency of ����������
� where the error is calculated
by considering a �� �uctuation of the mean of the di�erence�

����� Level � E	ciency

The Level � trigger requires the reconstruction of a � GeV�c track in the event

by the Level � 	lter program� This reconstruction algorithm is simpler than that

used in o�ine because of speed constraints� This simpli	cation results in a slight
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Figure ���� �� � p�� mass spectrum� including charge conjugate decays� used in

the proton dE�dx study� The signal region is shaded� and the sidebands hatched�
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Figure ��
� Di�erence between corrected and predicted dE�dx values for the pro�

tons and antiprotons� sideband subtracted�
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e�ciency

Monte Carlo ���� ����� ����

proton dE�dx ����� � ����

CTC tracking ����� � ���
�
SVX tracking ���� � ����
Level � trigger ���� � ����
total e�ciency ���� ����� ����

Table ���� Electron and �c reconstruction e�ciencies�

ine�ciency� which has been measured by hand�scanning J�� � �� events� cross�

checked with J�� events which fail Level � but were reconstructed o�ine� The

e�ciency is measured to be �� � �� in this dimuon sample� ���� We take this to
be the e�ciency in the single electron sample as well� since the most important

features of the sample high�pT tracks in a b environment are the same�

����� Total E	ciency

The e�ciency calculation is summmarized in the Table ���� The total e�ciency is

���� ���� � �����

��� Calculation

To summarize the previous sections� we have the following numbers�

� Ne�c � �
��� ����

� L � ���� � ��� pb��� and
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� E � ��� � ���� � �����

Therefore the �b production and semileptonic decay rate is calculated to be

�bpbT � ���
 GeV�c� jyj � ���
f�bBr�b � ��c e��eX�Br��c � pK����

� ���� ���� nb
�����

where the error at this point is entirely the statistical error on Ne�c � The systematic

uncertainties� including those from the luminosity and e�ciency calculation� will

be computed in the next chapter�
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Systematic Uncertainties

The uncertainty in the rate calculation of the previous chapter re�ects statistical

�uctuations in the actual number of observed events� However� there are additional

uncertainties which arise from assumptions made in the process of the calculation�

Systematic uncertainty is a measure of the robustness of these assumptions� and

of the calculation with respect to them� These uncertainties can be divided into

two categories� 	rst� those which re�ect the uncertainty in measured parameters

and detector simulation� and� second� those which primarily re�ect an uncertainty

in theory�

��� �b Mass

The mass of the �b has been recently measured at CDF using ��
 pb
�� of data to

be 
��� � 
stat��� �syst�� MeV�c�� ���� We have used this mass as the central
value in our simulation� To 	nd the �� variation� we add the two uncertainties

in quadrature and re�run our simulation with the higher and lower masses� As

expected for the small mass uncertainty� we 	nd the variation in the rate to be

���
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statistically insigni	cant�

��� �b Lifetime

The �b lifetime has been measured by various experiments at LEP using �c�� ���

and p� charge correlations� ���� The average result is c � �
�� �� �m� which we
use as the �b lifetime in our simulation� Instead of regenerating the entire Monte

Carlo sample with longer or shorter lifetimes� we have applied a �reweighting�

algorithm� we compute the ratio of normalized c distributions

wx� �
c

c �
e�x


�

c� �
� �

c�
� ����

where c � �
� �m� c � is the new lifetime� and x is the proper lifetime of a given

event� Since we know x for each generated event� we can compute wx�� which we

then use to weight the event when 	lling a histogram� such as for the pK� mass�

When this method is used� we see that the reconstruction e�ciency changes by

���� changing the rate by the same amount�

��� Level � Trigger

The Level � trigger turn�on was implemented independently of the detector Monte

Carlo� We vary the parameters of the turn�on according to the statistical uncer�

tainties in the 	t� and see a �
� e�ect�

��� Hadronic Leakage Modeling

The primary uncertainty in the detector model used in the Monte Carlo lies in its

modeling of the leakage of electromagnetic energy into the hadron calorimeters�
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We can check our simulation using D��s reconstructed in data� Monte Carlo stud�

ies indicate that the electron response is nearly identical for ��c �s and D
��s� We

	t the D� peak for di�erent Hadem cuts� resulting in the e�ectively background�

subtracted Hadem distributions shown in Figures ��� and ���� It is known that

the detector model gives too sharp a distribution due to its bremsstrahlung model�

However� this e�ect should only shift small�Hadem events� The shifted value re�

mains small� below ����� whereas our cut is at ����� The data distribution is

broader than Monte Carlo� but is consistent with ���� e�ciency for the loose cut

of Hadem� ����� We therefore use the Monte Carlo calculation of the Hadem cut

e�ciency and allow it to �uctuate up to ���� e�ciency� and down by the same

amount� The e�ciency for 	nding electrons relevent for our e�c signal changes by

����� which we take to be our systematic uncertainty for this model uncertainty�

��� Underlying Event

The standard Monte Carlo generates only the �b� ignoring the other particles that

are inevitably produced as a result of the pp collision� This �underlying event� con�

sists primarily of two components� particles from additional interactions between

the initial partons� and particles produced in conjunction with the b quark� includ�

ing 	nal state radiation and fragmentation debris� The reconstruction e�ciency

has already been corrected by ���� re�ecting the di�erence between pythia�

generated �b�s with and without the accompanying particles� This correction in�

cludes models of both components of the underlying event� and we also use it as

our systematic uncertainty�

Since both components of the underlying event kill events by producing parti�

cles near the electron� each component must individually increase the kill rate 
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Figure ���� Two�tower Hadem distribution from simulation and from D� decays

in electron data�
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Figure ���� Three�tower Hadem distribution from simulation and from D� decays

in electron data�
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that is� the e�ect of one component must be smaller than the e�ect of both�

Therefore one consistency check is to make sure that the event kill rate due to the

additional interactions is less than ��� This kill rate can be estimated from data�

First� the distribution of particles from such additional interactions is uniform in

�� whereas most bb pairs produce jets back�to�back� Figure ��� shows the di�erence

in � between the electron and other tracks in the same event� The distribution

clearly peaks at �� � � and �� � �� re�ecting the average back�to�back topology�

We locate the electron wedge and tower� and 	nd the wedge ��� away in � and

in the opposite tower� that is� at � � ��e� and we count the number of charged
tracks pointing to it� We add these tracks to the electron wedge� and �ag the event

if it now fails the N�d cut� In a portion of the data consisting of �
��� electrons�

���� events were �agged� resulting in a kill rate of ����� This rate is actually an

overestimate of the kill rate due to the additional interactions� since one of the

tracks contributing to the kill might have originated from the other underlying

event source�

��� Bottom Quark Generation

A full calculation� to all orders� of the b quark cross section would be independent

of the renormalization scale �� therefore the residual dependence� resulting from

using a next�to�leading order calculation� is a measure of the higher order e�ects�

Nason� Dawson� and Ellis choose a combination of the two available mass scales

from the calculation to set the central value of the renormalization scale�

� � �� �
q
p�T !m�

b� ����

We use � � ��� and � � ���� as a reasonable variation to test the residual �

dependence�
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Figure ���� Separation in � between electron and other tracks in the same data

events for track pT � �
� MeV�c�
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There is also an uncertainty in the b quark mass� We have used ���
 GeV�c� as

our central value� and vary it ����
 GeV�c� along with the renormalization scale�
We therefore simulate with two additional b spectra� one with mb � ��
� GeV�c�

and � � ����� and another with mb � 
��� GeV�c� and � � ���� The maximum

variation in the rate is ���� which we use as our systematic uncertainty�

The proton structure functions are another uncertainty in the generation of

b quarks� Our central value uses the MRSD� structure function set of Martin�

Roberts� and Stirling� These authors also give an alternate set� MRSD�� as a

��sigma�like variation� Using this alternate set along with the central b quark mass

and � scale changes the rate by less than ��� The total systematic uncertainty

due to the b quark generation is therefore ����

��� Fragmentation

As noted in Section ������ we have used the Peterson fragmentation model in our

simulation with �b � ����� � ������ which was measured for B mesons� Since our
rate is actually dependent upon fragmentation to a b baryon rather than a meson�

we take as a reasonable variation in ��bb twice the measured error� We calculate the

Monte Carlo e�ciency again for ��bb � ����� and �
�b
b � ������ The z distributions

are shown in Figure ���� The variation in the e�ciency is ����� with ��bb � �����
yielding the higher e�ciency� as expected due to its harder z spectrum�

��� Polarization

We have assumed in our rate calculation that the �b produced in a pp collision is

unpolarized� The reality is that the production polarization is unknown�
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Figure ���� z distributions for Peterson fragmentation functions with � � �����

solid�� � � ����� dashed�� and � � ����� dotted��
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The �b polarization changes the distribution of �c decay angles�

d$

d cos 	�c
� � ! P��b cos 	�c ����

where P is the production polarization� and ��b is the decay asymmetry parameter

for �b semileptonic decay� The angle 	�c is de	ned relative to the vector normal to

the plane which contains b quark before fragmentation and the hadron afterwards�

as shown in Figure ��
� Both P and ��b take on values from �� to !�� and
we therefore vary the product P��b from � to ��� The reconstruction e�ciency
changes by ���� which we adopt as our uncertainty�

Figure ��
� �b decay angle de	nition for production polarization�

�� Decay Model

The decay model systematic uncertainty includes two e�ects� First� there is the

question of what exclusive decay modes contribute to this inclusive measurement�

for instance the 	nal state ���c e��e with ���c � ��c ����� the isospin�suppressed
�b � "�c e

��e with "�c � ��c �
� or "�c � ��c �� or non�resonant decay modes
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with additional hadrons� These decay modes� by increasing the daughter mass�

reduce the event reconstruction e�ciency relative to that of the exclusive mode�

Second� there is the decay distribution� determining how the daughter particles

are distributed in phase space�

We have mentioned in Section ����� an inclusive model based on ACCMM� and

an exclusive model based on ISGW� the latter being used for the rate calculation�

If instead we use the ACCMM�based model� the e�ciency is reduced by ����

To estimate the uncertainty due to additional hadron production in �b �
��c e

��eX� we simulate the decay �b � ���c e��e with ���c � ��c �
��� using a

quark�level V � A decay model� We allow this decay mode to contribute up to


�� of the semileptonic decay width� We consider 
�� to be a reasonable upper

limit because this decay requires the spin of the diquark to change from � to ��

the energy to accomplish this change must come from the heavy�heavy b � c

transition� while this heavy quark�light diquark interaction is suppressed in the

heavy quark limit� Hence the exclusive decay �b � ��c e��e is expected to be the
majority of �b semileptonic decays� Since the e�ciency can only decrease with

this contribution� the rate increases up to ���� Other decay modes� such as those

with a "c or 'c� are isospin or strangeness suppressed�

���� Conclusion

The systematic uncertainties have been listed in Table ���� The total is ��
�
systematic uncertainty due to measured parameters and detector modeling� and

���
���� theoretical uncertainty�
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� uncertainty

reconstruction e�ciency ���
luminosity ��
Level � trigger �

hadron simulation ���
underlying event ��
�b lifetime ��
total systematic uncertainty ��

b quark pT spectrum ���
fragmentation ���
�b polarization ��
�b decay model ���

Br
�b����c e��e�

Br
�b���c e��e��Br
�b����c e��e�
!��

total theoretical uncertainty
!��

���

Table ���� Systematic uncertainties�
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Conclusions

The �b production and semileptonic decay rate has been measured at CDF to be

�bpbT � ���
 GeV�c� jyj � ���
f�bBr�b � ��c e��eX�Br��c � pK����

� ��� � ����stat�� ����syst�����������theory�� nb�

����

This is the 	rst measurement of the production and semileptonic decay of the �b

at a hadron collider� To compute the product of branching fractions� allowing a

comparison between our result and theoretical expectations as well as previous

experiments� we can use a CDF b quark cross section measurement� ����

�bpT � ���
 GeV�c� jyj � �� � ���� � ���� � ���� �b� ����

We remove the systematic uncertainties in this measurement due to the choice

of structure functions and the luminosity� since these are shared by the present

measurement� The product of branching fractions is

f�bBr�b � ��c e��eX�Br��c � pK����

� ���� � ���stat�� ���syst���������theory��� ����
����

���



���

where the cross section measurement uncertainties have been added to the system�

atic uncertainty�

All CDF b quark cross section measurements have assumed that the probability

that a Bu or Bd meson results from the fragmentation of the b quark is ���
� each�

There are indications that this fraction may be lower� CDF has measured ����

�Bs

�Bu ! �Bd

� �������������� � ���� ����

using the fact that bothD� andD�
s can decay to the common 	nal state ��

�� This

measurement assumes equal semileptonic partial widths for the three B mesons

and equal D�� contributions to these semileptonic widths� A further assumption is

made that D��
s decays are dominated by hadronic decays to non�strange D mesons�

The usual expectation is that the ratio in Equation ��� would be ���� whereas

this measurement suggests that Bs forms a larger portion of the b fragmentation

than expected� Moreover� the LEP experiments have measured the �b product of

branching fractions to be those listed in Table ���� ���� These measurements are

independent of the B meson fragmentation fractions and are consistent with the

present measurement within the uncertainties� If we assign the branching fractions

as in Section ���� f�b is ��� for the PDG �
�
c � pK��� branching fraction or ���

for the higher CLEO value� Taking these as measurements of fBs and f�b reduces

our product of branching fractions by up to ��� We have added this variation to

the systematic uncertainty quoted in Equation ����

This measured rate is also consistent with the rate expectation calculated in

Section ����

f�bBr�b � ��c e��eX�Br��c � pK���� � ���� ����� ��
�

However� as noted in Section ���� it should be kept in mind that any of the three

factors in this prediction may be reasonably expected to be di�erent from the



��


Experiment f�bBr�b � ��c e��eX�Br��c � pK����

ALEPH ��
� ��
� ��� � ���� � ����

DELPHI 
�� � ��� � ������������ � ����

OPAL ��� � ��
� ����� ����

Table ���� LEP measurements of the �b product of branching fractions� The 	rst

uncertainty is statistical� and where possible� the systematic uncertainty has been

split into detector�related and theoretical uncertainties�

values assumed here� Further examination of the �b and �c decays will clarify this

picture�
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